Journal of

Available online at www.sciencedirect.com

ScienceDirect

Differential Equations

J. Differential Equations $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

www.elsevier.com/locate/jde

Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator–prey system *

Shanbing Li a,*, Jianhua Wu b

^a School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
 ^b College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, PR China
 Received 19 September 2017; revised 16 March 2018

Abstract

In this paper, we continue to study a spatially heterogeneous predator–prey system where the interaction is governed by a Holling type II functional response, which has been studied in Du and Shi (2007) [14]. We further study the asymptotic profile of positive solutions and give a complete understanding of coexistence region. Moreover, a good understanding of the number, stability and asymptotic behavior of positive solutions is gained for large m. Finally, we further compare the difference of steady-state solutions between m > 0 and m = 0. It turns out that the spatial heterogeneity of the environment and the Holling type II functional response play a very important role in this model. © 2018 Published by Elsevier Inc.

MSC: 35J55; 35B30; 35B40; 92D25

Keywords: Spatially heterogeneous; Holling type II response; Asymptotic behavior; Stability

E-mail address: lishanbing@xidian.edu.cn (S. Li).

https://doi.org/10.1016/j.jde.2018.05.017 0022-0396/© 2018 Published by Elsevier Inc.

Please cite this article in press as: S. Li, J. Wu, Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator—prey system, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.05.017

[†] The work is supported by the Natural Science Foundation of China (11771262, 11671243, 61672021), the Post-doctoral Science Foundation of China (2016M602767), the Fundamental Research Funds for the Central Universities (JBX170707).

Corresponding author.

1. Introduction and main results

In the spatial predator–prey model, the parameters (e.g., the growth rate, the crowding effect, and the predator–prey interaction rates) are traditionally assumed to be constant (see [1,5, 9,10,12,13,20–23,26,31] and the references therein). However, due to the heterogeneity of the environment, it is more realistic to assume that the parameters are spatially dependent. Hence a classical predator–prey system with the heterogeneity of the environment and Neumann boundary conditions is the following form:

$$\begin{cases} u_{t} - d_{1}\Delta u = \lambda(x)u - a(x)u^{2} - b(x)\phi(u)v, & x \in \Omega, \ t > 0, \\ v_{t} - d_{2}\Delta v = \mu(x)v - d(x)v^{2} + c(x)\phi(u)v, & x \in \Omega, \ t > 0, \\ \partial_{\nu}u = \partial_{\nu}v = 0, & x \in \partial\Omega, \ t > 0, \\ u(x, 0) = u_{0}(x) \geq 0, \ v(x, 0) = v_{0}(x) \geq 0, & x \in \overline{\Omega}, \end{cases}$$

where unknown functions u(x,t) and v(x,t) represent the distribution densities of the prey and the predator respectively; the habitat $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary $\partial \Omega$; the parameter functions are assumed to be nonnegative and smooth in $\overline{\Omega}$ (except $\mu(x)$, which can take negative values); the function $\phi(u)$ represents the functional response of the predator; $\partial_{\nu}u = \nabla u(x) \cdot v(x)$ is the out-flux of u, and v(x) is the outer unit normal vector of $\partial \Omega$ at x. Thus the zero-flux boundary condition used in the system implies that it is a closed ecosystem in the habitat Ω .

As known to all, the classical Lotka–Volterra model assumes that $\phi(u) = u$. But when the handling time of each prey is also considered, a more reasonable response function is the Holling type II response $\phi(u) = u/(1 + mu)$ for some m > 0, which was first examined by Holling [18].

To study the effect of the Holling type II response and the degeneracy of the crowding function in the prey equation, Du and Shi [14] considered the following predator—prey system:

$$\begin{cases} u_t - \Delta u = \lambda u - a(x)u^2 - \frac{buv}{1+mu}, & x \in \Omega, \ t > 0, \\ v_t - \Delta v = \mu v - v^2 + \frac{cuv}{1+mu}, & x \in \Omega, \ t > 0, \\ \partial_{\nu} u = \partial_{\nu} v = 0, & x \in \partial\Omega, \ t > 0, \\ u(x,0) = u_0(x) \ge 0, \ v(x,0) = v_0(x) \ge 0, & x \in \overline{\Omega}, \end{cases}$$

and the corresponding steady-state problem is

$$\begin{cases}
-\Delta u = \lambda u - a(x)u^2 - \frac{buv}{1+mu}, & x \in \Omega, \\
-\Delta v = \mu v - v^2 + \frac{cuv}{1+mu}, & x \in \Omega, \\
\partial_{\nu} u = \partial_{\nu} v = 0, & x \in \partial \Omega,
\end{cases}$$
(1.1)

where λ , μ , b, c, m are constants, all positive except μ , which may take negative values; a(x) is a nonnegative smooth function on $\overline{\Omega}$ satisfying

$$a(x) \equiv 0, x \in \overline{\Omega}_0 \text{ and } a(x) > 0, x \in \overline{\Omega} \setminus \overline{\Omega}_0,$$

Download English Version:

https://daneshyari.com/en/article/8898567

Download Persian Version:

https://daneshyari.com/article/8898567

<u>Daneshyari.com</u>