

Available online at www.sciencedirect.com

Journal of **Differential**

YJDEQ:934

[J. Differential Equations](https://doi.org/10.1016/j.jde.2018.05.016) ••• (••••) •••–•••

www.elsevier.com/locate/jde

Equations

Small data well-posedness for derivative nonlinear Schrödinger equations

Donlapark Pornnopparath

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, USA Received 2 November 2017; revised 4 May 2018

Abstract

We study the local and global solutions of the generalized derivative nonlinear Schrödinger equation $i\partial_t u + \Delta u = P(u, \overline{u}, \partial_x u, \partial_x \overline{u})$, where each monomial in *P* is of degree 3 or higher, in low-regularity Sobolev spaces without using a gauge transformation. Instead, we use a solution decomposition technique introduced in [\[4\]](#page--1-0) during the perturbative argument to deal with the loss on derivative in nonlinearity. It turns out that when each term in *P* contains only one derivative, the equation is locally well-posed in $H^{\frac{1}{2}}$, otherwise we have a local well-posedness in $H^{\frac{3}{2}}$. If each monomial in *P* is of degree 5 or higher, the solution can be extended globally. By restricting to equations to the form $i\partial_t u + \Delta u = \partial_x P(u, \overline{u})$ with the quintic nonlinearity, we were able to obtain the global well-posedness in the critical Sobolev space. © 2018 Elsevier Inc. All rights reserved.

MSC: 35Q55; 35A01; 35B45

Keywords: Derivative nonlinear Schrödinger equations; Local well-posedness; Global well-posedness

1. Introduction

In this paper, we study the well-posedness of the Cauchy problem for the generalized derivative nonlinear Schrödinger equation (gDNLS) on R.

E-mail address: donlapark@ucsd.edu.

<https://doi.org/10.1016/j.jde.2018.05.016>

0022-0396/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: D. Pornnopparath, Small data well-posedness for derivative nonlinear Schrödinger equations, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.05.016

2 *D. Pornnopparath / J. Differential Equations* ••• *(*••••*)* •••*–*•••

$$
\begin{cases}\ni\partial_t u + \Delta u = P(u, \overline{u}, \partial_x u, \partial_x \overline{u}) \\
u(x, 0) = u_0 \in H^s(\mathbb{R}), s \ge s_0.\n\end{cases}
$$
\n(1)

Here, *u* is a complex-valued function and $P: \mathbb{C}^4 \to \mathbb{C}$ is a polynomial of the form

$$
P(z) = P(z_1, z_2, z_3, z_4) = \sum_{d \le |\alpha| \le l} C_{\alpha} z^{\alpha},\tag{2}
$$

and $l \ge d \ge 3$. There are several results regarding the well-posedness of this equation. In [\[19\]](#page--1-0), Kenig, Ponce and Vega proved that the equation (1) is locally well-posed for a small initial data in $H^{\frac{7}{2}}(\mathbb{R})$. There has been some interest in the special case where $P = i\lambda |u|^{k}u_{x}$:

$$
\begin{cases} i \partial_t u + \Delta u = i \lambda |u|^k u_x \\ u(x, 0) = u_0 \in H^s(\mathbb{R}), s \ge s_0, \end{cases}
$$

with $k \in \mathbb{R}$. Hao ([\[13\]](#page--1-0)) proved that this equation is locally well-posed in $H^{\frac{1}{2}}(\mathbb{R})$ for $k \geq 5$, and Ambrose–Simpson ([\[1\]](#page--1-0)) proved the result in $H^1(\mathbb{R})$ for $k > 2$. Recent studies show that these results can be improved. See Santos ([\[25\]](#page--1-0)) for the local-wellposedness in $H^{\frac{1}{2}}$ when $k \ge 2$ and Hayashi–Ozawa ([\[14\]](#page--1-0)) for the local well-posedness in H^2 when $k \ge 1$ and the global wellposedness in H^1 when $k > 2$.

Several studies showed that we have better results if *P* only consists of \overline{u} and $\partial_{x}\overline{u}$ due to the following heuristic: if u solves the linear Schrödinger equation, then the space–time Fourier transform of \overline{u} is supported away from the parabola $\{(\xi, \tau) | \tau + \xi^2 = 0\}$, leading to strong dis-persive estimates. Grünrock ([\[12\]](#page--1-0)) showed that for $P = \partial_x(\overline{u}^d)$ or $P = (\partial_x \overline{u})^d$ where $d \ge 3$, the equation (1) is locally well-posed for any $s > \frac{1}{2} - \frac{1}{d-1}$ in the former case and $s > \frac{3}{2} - \frac{1}{d-1}$ in the latter. Later, Hirayama ([\[16\]](#page--1-0)) extended Grünrock's results for $P = \partial_x(\overline{u}^d)$ to the global well-posedness for $s \geq \frac{1}{2} - \frac{1}{d-1}$.

There are also various results for higher dimension analogues of (1)

$$
\begin{cases}\ni\partial_t u + \Delta u = P(u, \overline{u}, \nabla u, \nabla \overline{u}) \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^n.\n\end{cases}
$$
\n(3)

The most general results in \mathbb{R}^n for $n \geq 2$ are due to Kenig, Ponce and Vega in [\[19\]](#page--1-0). For a more specific case, we refer to [\[2\]](#page--1-0) and [\[3\]](#page--1-0) where Bejenaru obtained a local well-posedness result for $n = 2$ and $P(z)$ is quadratic with low regularity initial data. For results in Besov spaces, see [\[30\]](#page--1-0) for the global well-posedness in $\dot{B}_{1,2}^{s_n}(\mathbb{R}^n)$ where $n \ge 2$ and $s_n = \frac{n}{2} - \frac{1}{d-1}$ which is the critical exponent.

For another type of derivative nonlinearities, we refer to Chihara ([\[10\]](#page--1-0)) for nonlinearities of the form $f(u, \partial u)$, where $f : \mathbb{R}^2 \times \mathbb{R}^{2n} \to \mathbb{R}$ (identifying $\mathbb C$ with \mathbb{R}^2) is a smooth function such that $f(u, v) = O(|u|^2 + |v|^2)$ or $f(u, v) = O(|u|^3 + |v|^3)$ near $(u, v) = 0$. It turns out that the corresponding Cauchy problems are locally well-posed in $H^{\lfloor n/2 \rfloor + 4}$ for any $n \ge 1$.

Our first result is the local well-posedness of (1) in Sobolev spaces when the nonlinearity contains an arbitrary number of derivatives.

Please cite this article in press as: D. Pornnopparath, Small data well-posedness for derivative nonlinear Schrödinger equations, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.05.016

Download English Version:

<https://daneshyari.com/en/article/8898568>

Download Persian Version:

<https://daneshyari.com/article/8898568>

[Daneshyari.com](https://daneshyari.com)