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Abstract

We consider the spectral stability problem for Floquet-type systems such as the wave equation v =
y2vyx — Yru with periodic forcing 1. Our approach is based on a comparison with finite-dimensional ap-
proximations. Specific results are obtained for a system where the forcing is due to a coupling between
the wave equation and a time-period solution of a nonlinear beam equation. We prove (spectral) stabil-
ity for some period and instability for another. The finite-dimensional approximations are controlled via
computer-assisted estimates.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to develop a nonperturbative method for analyzing the stability of
certain periodically driven systems. We do this in the context of a wave equation

v”(r,x):y2vxx(r,x)—W(r,x)v(r,x), TeR, xe,m), (1.1)

where 1 depends periodically on the time variable t. For the function v we impose Dirichlet
boundary conditions at x =0 and x = r. We consider a model where the coefficient ¥ is deter-
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mined canonically by the desired time-period 7. In this case we prove spectral stability for some
value of 7' and absence of spectral stability for another.

We say that the equation (1.1) is spectrally stable if the corresponding evolution operator ®(7)
has no spectrum outside the unit circle. To be more specific, let us write the second order equation
(1.1) in the usual way as a pair of first order (in 7) equations: v; = v and v; = y2v” — Y¥v. The
solution depends linearly on the initial condition at time zero, and this defines the time-t map
@ (7) via the equation

V@O =d@V(©), V()= [v(” ')], TeR. (1.2)
v(t,.)

If ¢ is time-periodic with period T, then the flow & satisfies ®(t + T) = ®(7)D(T). So the

growth properties of @ are determined by the properties of the linear operator ® (7). We note

that, formally, this operator is symplectic, and thus its spectrum is invariant under complex con-

jugation z — Z and inversion z — 1/z.

Our spectral analysis of @ involves a comparison principle for monotone families of Flo-
quet systems. This allows us e.g. to bound the eigenvalues of ®(7") on the unit circle from both
sides by the eigenvalues obtained from certain finite-dimensional approximations. The finite-
dimensional systems are still nontrivial, but we can estimate their Floquet spectrum by using
computer-assisted techniques.

Our analysis was motivated in part by numerical observations [6] on instabilities in a model
of a suspension bridge. To be more precise, and to motivate our choice of the forcing v in (1.1),
consider the following (Hamiltonian) system of partial differential equations:

Urr = —Uxxxx + %[f(u"‘v)‘i‘f(u - U)]7

5 ' (1.3)
Uz =Y vxx+§[f(”+v)_f(“_v)]-
Here u = u(7, x) and v = v(r, x) are functions on R x (0, i), satisfying Navier and Dirichlet
boundary conditions, respectively, at x = 0 and x = 7. The coupling function f is nonlinear and
will be specified below.

The equations (1.3) are a simplified version of a model [6] for a suspension bridge. In this
context, u describes the longitudinal modes of the bridge, and v describes the torsional modes.
The function f models the force that the hangers apply to the deck; see also equation (4) and the
ensuing discussion in [5]. Numerical studies on the model described in [6] indicate that there is a
loss of stability in the torsional modes as the energy of the longitudinal modes exceeds a certain
threshold. Since the torsional amplitudes are typically small, we will v-linearize the system (1.3)
in the sense of dropping all terms of order v?.

A reasonable choice for a simplified bridge model is f (1) = —ku — u>. With this choice
of f, setting v =0 in (1.3) reduces the system to a nonlinear beam equation for u. In order to
show that this equation has a time-periodic solution with a given periods 7, it is convenient to
perform a change of variables t = ot with @« =27/ T, so that T-periodicity in t corresponds to
27 -periodicity in ¢. In these new variables, and for f(u) = —ku — u3, the system (1.3) becomes

(xzun = —Uxxxx — (“2 + K)” > (1.4)

@*v =y o — (Bu® + 1), (1.5)
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