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Abstract

We consider the spectral stability problem for Floquet-type systems such as the wave equation vττ =
γ 2vxx − ψv with periodic forcing ψ . Our approach is based on a comparison with finite-dimensional ap-
proximations. Specific results are obtained for a system where the forcing is due to a coupling between 
the wave equation and a time-period solution of a nonlinear beam equation. We prove (spectral) stabil-
ity for some period and instability for another. The finite-dimensional approximations are controlled via 
computer-assisted estimates.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to develop a nonperturbative method for analyzing the stability of 
certain periodically driven systems. We do this in the context of a wave equation

vττ (τ, x) = γ 2vxx(τ, x) − ψ(τ, x)v(τ, x) , τ ∈ R , x ∈ (0,π) , (1.1)

where ψ depends periodically on the time variable τ . For the function v we impose Dirichlet 
boundary conditions at x = 0 and x = π . We consider a model where the coefficient ψ is deter-
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mined canonically by the desired time-period T . In this case we prove spectral stability for some 
value of T and absence of spectral stability for another.

We say that the equation (1.1) is spectrally stable if the corresponding evolution operator �(T )

has no spectrum outside the unit circle. To be more specific, let us write the second order equation 
(1.1) in the usual way as a pair of first order (in τ ) equations: vτ = ν and ντ = γ 2vxx − ψv. The 
solution depends linearly on the initial condition at time zero, and this defines the time-τ map 
�(τ) via the equation

V (τ) = �(τ)V (0) , V (τ) =
[
v(τ, .)

ν(τ, .)

]
, τ ∈R . (1.2)

If ψ is time-periodic with period T , then the flow � satisfies �(τ + T ) = �(τ)�(T ). So the 
growth properties of � are determined by the properties of the linear operator �(T ). We note 
that, formally, this operator is symplectic, and thus its spectrum is invariant under complex con-
jugation z �→ z̄ and inversion z �→ 1/z.

Our spectral analysis of � involves a comparison principle for monotone families of Flo-
quet systems. This allows us e.g. to bound the eigenvalues of �(T ) on the unit circle from both 
sides by the eigenvalues obtained from certain finite-dimensional approximations. The finite-
dimensional systems are still nontrivial, but we can estimate their Floquet spectrum by using 
computer-assisted techniques.

Our analysis was motivated in part by numerical observations [6] on instabilities in a model 
of a suspension bridge. To be more precise, and to motivate our choice of the forcing ψ in (1.1), 
consider the following (Hamiltonian) system of partial differential equations:

uττ = −uxxxx + 1
2

[
f (u + v) + f (u − v)

]
,

vττ = γ 2vxx + 1
2

[
f (u + v) − f (u − v)

]
.

(1.3)

Here u = u(τ, x) and v = v(τ, x) are functions on R × (0, π), satisfying Navier and Dirichlet 
boundary conditions, respectively, at x = 0 and x = π . The coupling function f is nonlinear and 
will be specified below.

The equations (1.3) are a simplified version of a model [6] for a suspension bridge. In this 
context, u describes the longitudinal modes of the bridge, and v describes the torsional modes. 
The function f models the force that the hangers apply to the deck; see also equation (4) and the 
ensuing discussion in [5]. Numerical studies on the model described in [6] indicate that there is a 
loss of stability in the torsional modes as the energy of the longitudinal modes exceeds a certain 
threshold. Since the torsional amplitudes are typically small, we will v-linearize the system (1.3)
in the sense of dropping all terms of order v2.

A reasonable choice for a simplified bridge model is f (u) = −κu − u3. With this choice 
of f , setting v = 0 in (1.3) reduces the system to a nonlinear beam equation for u. In order to 
show that this equation has a time-periodic solution with a given periods T , it is convenient to 
perform a change of variables t = ατ with α = 2π/T , so that T -periodicity in τ corresponds to 
2π -periodicity in t . In these new variables, and for f (u) = −κu − u3, the system (1.3) becomes

α2utt = −uxxxx − (
u2 + κ

)
u , (1.4)

α2vtt = γ 2vxx − (
3u2 + κ

)
v , (1.5)
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