# Positive solutions for a Kirchhoff problem with vanishing nonlocal term 

João R. Santos Júnior ${ }^{\text {a }}$, Gaetano Siciliano ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Faculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, Brazil<br>${ }^{\text {b }}$ Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil

Received 19 September 2017


#### Abstract

In this paper we study the Kirchhoff problem $$
\begin{cases}-m\left(\|u\|^{2}\right) \Delta u=f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$


in a bounded domain, allowing the function $m$ to vanish in many different points. Under an appropriated area condition, by using a priori estimates, truncation techniques and variational methods, we prove a multiplicity result of positive solutions which are ordered in the $H_{0}^{1}(\Omega)$-norm.
© 2018 Elsevier Inc. All rights reserved.

MSC: 35J20; 35J25; 35Q74
Keywords: Kirchhoff type equation; Degenerate coefficient; Variational method

[^0]
## 1. Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 1$ be a smooth bounded domain. We are interested in this paper to study the existence of positive solutions for the problem

$$
\begin{cases}-m\left(\|u\|^{2}\right) \Delta u=f(u) & \text { in } \Omega  \tag{P}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\|u\|:=|\nabla u|_{2}$ is the usual norm in the Sobolev space $H_{0}^{1}(\Omega)$ and $m:[0, \infty) \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ are suitable continuous functions. Along the paper, $|\cdot|_{p}$ will denote the $L^{p}(\Omega)$-norm.

Problem (P) is the $N$-dimensional version, in the stationary case, of the Kirchhoff equation introduced in [8]. Over the past years several authors have undertaken reasonable efforts to investigate stationary Kirchhoff problems like (P), by considering different general assumptions on functions $m$ and $f$. Without any intention to provide a survey about the subject, we would like to refer the reader to the papers $[1,4,5,7,9,10]$ and the references therein.

Beside the importance of their contributions, all the previous mentioned papers require the function $m$ to be bounded from below by a positive constant. In this way the problem ( P ) is not degenerate and many approaches involving variational and topological methods can be used in a straightforward and effective way in order to get solutions.

On the other hand, in the recent paper [2] the positivity assumption on $m$ is relaxed. Indeed Ambrosetti and Arcoya consider the degenerate coefficient $m$ by allowing $m(0)=0$ and/or $\lim _{t \rightarrow+\infty} m(t)=0$. However in such a paper the condition $m(t)>0$ for $t>0$ is maintained. See [2, Section 3].

Motivated by the above facts and by papers [3,6], where multiplicity results are obtained for an elliptic problem under a local nonlinearity which vanishes in different points, a natural question concerns the existence of many solutions for problem ( P ) in the case of a degenerate $m$, that is, when it can vanish in many different points. Indeed this is the object of this paper to which we give a positive answer. Roughly speaking, if $m$ vanishes in $K$ distinct points and a suitable area condition is imposed, then the problem has $K$ positive and ordered solutions.

To be more precise, let us start to give the assumptions on the problem. We require the following conditions on the functions $m$ and $f$ :
(m) there exist positive numbers $0<t_{1}<t_{2}<\ldots<t_{K}$ such that

- $m\left(t_{k}\right)=0$ for all $k \in\{1, \ldots, K\}$,
- $m>0$ in $\left(t_{k-1}, t_{k}\right)$, for all $k \in\{1, \ldots, K\}$; we agreed that $t_{0}=0$,
(f) there exists $s_{*}>0$ such that $f(t)>0$ in $\left(0, s_{*}\right)$ and $f\left(s_{*}\right)=0$.

We define the following truncation of the function $f$ :

$$
f_{*}(t)= \begin{cases}f(0) & \text { if } t<0  \tag{1.1}\\ f(t) & \text { if } 0 \leq t<s_{*} \\ 0 & \text { if } s_{*} \leq t\end{cases}
$$

which is of course continuous, and let $F_{*}(t)=\int_{0}^{t} f_{*}(s) d s$.

# https://daneshyari.com/en/article/8898628 

Download Persian Version:

## https://daneshyari.com/article/8898628

## Daneshyari.com


[^0]:    ${ }^{4}$ J. J.R. Santos Júnior was partially supported by CNPq, Brazil, 302698/2015-9 and CAPES, Brazil, 88881. 120045/2016-01. Gaetano Siciliano was partially supported by CNPq, Brazil, 305616/2015-3, FAPESP, Brazil, 2016/02617-3 and CAPES, Brazil.

    E-mail addresses: joaojunior@ufpa.br (J.R. Santos Júnior), sicilian@ime.usp.br (G. Siciliano).

