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Abstract

In this paper, we are concerned with the fractional order static Hartree equations with critical nonlocal 
nonlinearity. We prove that the positive solutions are radially symmetric about some point in Rd and must 
assume the certain explicit forms. The arguments used in our proof is a variant (for nonlocal nonlinearity) 
of the direct moving plane method for fractional Laplacians in [6]. The main ingredients are the variants 
(for nonlocal nonlinearity) of the maximum principles, i.e., Decay at infinity and Narrow region principle
(Theorem 2.1 and 2.6).
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1. Introduction

In this paper, we consider the following critical fractional order static Hartree equations with 
nonlocal nonlinearity {

(−�)
α
2 u =

(
1

|x|2α ∗ |u|2
)
u, x ∈R

d ,

u ∈ C
1,1
loc ∩Lα(Rd), u(x) > 0, x ∈R

d ,
(1.1)

where 0 < α < min{2, d2 }, d ≥ 2 and

Lα(Rd) :=
{
u : Rd → R

∣∣ ∫
Rd

|u(x)|
1 + |x|d+α

dx < ∞
}
.

The nonlocal fractional Laplacians are defined by (see [2,6,9,31,36])

(−�)
α
2 u(x) = Cα,d P .V .

∫
Rd

u(x) − u(y)

|x − y|d+α
dy := Cα,d lim

ε→0

∫
|y−x|≥ε

u(x) − u(y)

|x − y|d+α
dy (1.2)

for functions u ∈ C
1,1
loc ∩Lα(Rd), where the constant Cα,d = ( ∫

Rd
1−cos(2πζ1)

|ζ |d+α dζ
)−1.

One should observe that both the fractional Laplacians (−�)
α
2 and the Hartree type non-

linearity are nonlocal in our equation (1.1), which is closely related to the following integral 
equation

u(x) =
∫
Rd

Rα,d

|x − y|d−α

(∫
Rd

|u(z)|2
|y − z|2α

dz

)
u(y)dy, (1.3)

where the Riesz potential’s constants Rα,d := �
( d−α

2
)

π
d
2 2α�( α

2 )
(see [32]). We say that equations (1.1)

and (1.3) are Ḣ
α
2 -critical in the sense that both the equations (1.1) and (1.3) and the Ḣ

α
2 norm 

are invariant under the same scaling uρ(x) = ρ
d−α

2 u(ρx).
PDEs of type (1.1) arise in the Hartree–Fock theory of the nonlinear Schrödinger equations 

(see [27]). The solution u to problem (1.1) is also a ground state or a stationary solution to the 
following Ḣ

α
2 -critical focusing fractional order dynamic Schrödinger–Hartree equation

i∂tu + (−�)
α
2 u =

( 1

|x|2α
∗ |u|2

)
u, (t, x) ∈R×R

d . (1.4)

The Schrödinger–Hartree equations have many interesting applications in the quantum theory of 
large systems of non-relativistic bosonic atoms and molecules (see, e.g. [16]). Dynamic equations 
of the type (1.4) have been quite intensively studied, please refer to [25,29] and the references 
therein, in which the ground state solution can be regarded as a crucial criterion or threshold 
for global well-posedness and scattering in the focusing case. Therefore, the classification of 
solutions to (1.1) plays an important and fundamental role in the study of the focusing fractional 
order Schrödinger–Hartree equations (1.4).
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