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Abstract

This paper is concerned with the existence and qualitative properties of transition fronts for time periodic 
bistable reaction–diffusion equations in RN . We first show that any almost-planar transition front is actually 
planar, regardless of the number of transition layers. Then we prove that all transition fronts admit a global 
mean speed γ and it holds γ = |c|, where c is the speed of the planar traveling front. Finally we establish 
the existence of a transition front in RN that is not a standard traveling front. Such a front behaves like three 
moving time periodic planar fronts as time goes to −∞ and like a time periodic V-shaped traveling front as 
time goes to ∞.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the existence and qualitative properties of transition fronts to the 
following reaction–diffusion equation:
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ut =�u+ f (t, u), x ∈R
N, t ∈ R. (1.1)

In the sequel, we assume that the following hypotheses hold.

(H1) f (t, u) ∈ C1,2(R ×R) is T-periodic in t , i.e., there exists a constant T > 0 such that f (t +
T , u) = f (t, u) for all (t, u) ∈ R ×R.

(H2) The period map P(α) := ω(T , α) has exactly three fixed points 0, α0, 1 such that 
0 < α0 < 1, where ω(t, α) is the solution of

ωt = f (t,ω), t ∈R, ω(0, α)= α ∈R.

Furthermore, they are non-degenerate and 0 and 1 are stable, i.e.,

d

dα
P (0) < 1,

d

dα
P (1) < 1 and

d

dα
P (α0) > 1.

A typical example satisfying the hypotheses (H1)–(H2) is the nonlinearity f = u(u −a(t))(1 −u)

with a(t) = a(t + T ) and 0 < a(t) < 1. More general example can be referred to Alikakos et al. 
[1].

Throughout this paper, the solution u : R ×R
N → [0, 1] is understood as a classical solution 

of (1.1). As a result of the strong maximum principle, there should be either u ≡ 0 or 0 < u < 1
or u ≡ 1. We focus on the nontrivial case in the sequel, namely the solution 0 <u < 1.

Under the assumptions (H1)–(H2), Alikakos et al. [1] showed that (1.1) admits a time periodic 
planar traveling front φ(t, x · e− ct) satisfying

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φt − cφξ − φξξ − f (t,φ)= 0, (t, ξ) ∈R

2,

φ(t,∞)= limξ→∞ φ(t, ξ)= 0, t ∈R,

φ(t,−∞)= limξ→−∞ φ(t, ξ)= 1, t ∈R,

φ(t + T , ·)= φ(t, ·), φ(0,0)= α0

(1.2)

and

(i) φξ (t, ξ) < 0 in R × R. Namely, φ(t, ·) is monotone decreasing with respect to the moving 
coordinate for each t .

(ii) There exist positive constants K and ν satisfying{
|φ(t, ξ)− 1| + |φξ (t, ξ)| + |φξξ (t, ξ)| ≤Keνξ , ξ ≤ 0, t ∈R,

|φ(t, ξ)| + |φξ (t, ξ)| + |φξξ (t, ξ)| ≤Ke−νξ , ξ ≥ 0, t ∈R.
(1.3)

That is, φ exponentially approaches its limits as ξ → ±∞.

Moreover, they proved that such a time periodic traveling front is unique up to shifts in the spatial 
variable for any given unit vector e ∈ S

N−1, and is asymptotically stable under front like planar 
initial perturbations. It is worth to point out that the level sets of such traveling fronts, which are 
orthogonal to the direction of propagation e, are parallel hyperplane. These fronts are invariant in 
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