Minimization of quotients with variable exponents

C.O. Alves ${ }^{\text {a,* }}$, G. Ercole ${ }^{\text {b }}$, M.D. Huamán Bolaños ${ }^{\text {b }}$
${ }^{\text {a }}$ Universidade Federal de Campina Grande, Campina Grande, PB, 58.109-970, Brazil
${ }^{\text {b }}$ Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30.123-970, Brazil

Received 19 August 2017; revised 12 March 2018

Abstract

Let Ω be a bounded domain of $\mathbb{R}^{N}, p \in C^{1}(\bar{\Omega}), q \in C(\bar{\Omega})$ and $l, j \in \mathbb{N}$. We describe the asymptotic behavior of the minimizers of the Rayleigh quotient $\frac{\|\nabla u\|_{p(x)}}{\|u\|_{j q(x)}}$, first when $j \rightarrow \infty$ and after when $l \rightarrow \infty$. © 2018 Published by Elsevier Inc.

MSC: 35B40; 35J60; 35P30
Keywords: Asymptotic behavior; Infinity Laplacian; Variable exponents

1. Introduction

Let Ω be a bounded domain of $\mathbb{R}^{N}, N \geq 2$, and consider the Rayleigh quotient

$$
\frac{\|\nabla u\|_{p(x)}}{\|u\|_{q(x)}}
$$

associated with the immersion of the Sobolev space $W_{0}^{1, p(x)}(\Omega)$ into the Lebesgue space $L^{q(x)}(\Omega)$, where the variable exponents satisfy

$$
1<\inf _{\Omega} p(x) \leq \sup _{\Omega} p(x)<\infty
$$

[^0]https://doi.org/10.1016/j.jde.2018.04.010
0022-0396/© 2018 Published by Elsevier Inc.
and
\[

1<q(x)<p^{*}(x):=\left\{$$
\begin{array}{cll}
\frac{N p(x)}{N-p(x)} & \text { if } & p(x)<N \\
\infty & \text { if } & p(x) \geq N
\end{array}
$$\right.
\]

In this paper we study the behavior of the least Rayleigh quotients when the functions $p(x)$ and $q(x)$ become arbitrarily large. Our script is based on the paper [8], where these functions are constants. Thus, in order to overcome the difficulties imposed by the fact that the exponents depend on x, we adapt arguments developed by Franzina and Lindqvist in [18], where $p(x)=q(x)$. Actually, our results in the present paper generalize those of [8] for variable exponents and complement the approach of [18].

In [8], Ercole and Pereira first studied the behavior, when $q \rightarrow \infty$, of the positive minimizers w_{q} corresponding to

$$
\lambda_{q}:=\min \left\{\|\nabla u\|_{L^{p}(\Omega)}: u \in W_{0}^{1, p}(\Omega) \quad \text { in } \quad\|u\|_{L^{q}(\Omega)}=1\right\}
$$

for a fixed $p>N$. They obtained a function $u_{p} \in W_{0}^{1, p}(\Omega)$ as the uniform limit in $\bar{\Omega}$ of a sequence $w_{q_{n}}$, with $q_{n} \rightarrow \infty$. Such a function is positive in Ω, assumes the maximum value 1 at a unique point x_{p} and satisfies

$$
\begin{cases}-\Delta_{p} u=\Lambda_{p} \delta_{x_{p}} & \text { in } \quad \Omega \\ u=0 & \text { on } \quad \partial \Omega\end{cases}
$$

where

$$
\Lambda_{p}:=\min \left\{\|\nabla u\|_{L^{p}(\Omega)}: u \in W_{0}^{1, p}(\Omega) \quad \text { in } \quad\|u\|_{L^{\infty}(\Omega)}=1\right\}
$$

and $\delta_{x_{p}}$ denotes the Dirac delta distribution concentrated at x_{p}. In the sequence, they determined the behavior of the pair $\left(\Lambda_{p}, u_{p}\right)$, as $p \rightarrow \infty$. In fact, they proved that

$$
\lim _{p \rightarrow \infty} \Lambda_{p}=\Lambda_{\infty}:=\inf _{0 \neq v \in W_{0}^{1, \infty}(\Omega)} \frac{\|\nabla v\|_{\infty}}{\|v\|_{\infty}}
$$

and that there exist a sequence $p_{n} \rightarrow \infty$, a point $x_{*} \in \Omega$ and a function $u_{\infty} \in W_{0}^{1, \infty}(\Omega) \cap C(\bar{\Omega})$ such that: $x_{p_{n}} \rightarrow x_{*},\|d\|_{\infty}=d\left(x_{*}\right)$, where d is the distance function to the boundary, $u_{\infty} \leq$ $\frac{d}{\|d\|_{\infty}}$ and $u_{p_{n}} \rightarrow u_{\infty}$ uniformly in $\bar{\Omega}$. Moreover, they showed that: u_{∞} is also a minimizer of Λ_{∞}, assumes its maximum value 1 only at x_{*} and satisfies

$$
\begin{cases}\Delta_{\infty} u=0 & \text { in } \Omega \backslash\left\{x_{*}\right\} \\ u=\frac{d}{\|d\|_{\infty}} & \text { on } \partial\left(\Omega \backslash\left\{x_{*}\right\}\right)=\left\{x_{*}\right\} \cup \partial \Omega\end{cases}
$$

in the viscosity sense.
In [18], Franzina and Lindqvist determined the exact asymptotic behavior, as $j \rightarrow \infty$, of both the minimum $\Lambda_{j p(x)}$ of the quotients $\frac{\|\nabla u\|_{j p(x)}}{\|u\|_{j p(x)}}$ and its respective $j p(x)$-normalized minimizer u_{j}. They proved that

$$
\lim _{j \rightarrow \infty} \Lambda_{j p(x)}=\Lambda_{\infty}
$$

https://daneshyari.com/en/article/8898677

Download Persian Version:
https://daneshyari.com/article/8898677

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: coalves@mat.ufcg.edu.br (C.O. Alves), grey@mat.ufmg.br (G. Ercole), emdi_82@hotmail.com (M.D. Huamán Bolaños).

