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Abstract

Let � be a bounded domain of RN , p ∈ C1(�), q ∈ C(�) and l, j ∈ N. We describe the asymptotic 
behavior of the minimizers of the Rayleigh quotient ‖∇u‖lp(x)

‖u‖jq(x)
, first when j → ∞ and after when l → ∞.
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1. Introduction

Let � be a bounded domain of RN , N ≥ 2, and consider the Rayleigh quotient

‖∇u‖p(x)

‖u‖q(x)

,

associated with the immersion of the Sobolev space W
1,p(x)
0 (�) into the Lebesgue space 

Lq(x)(�), where the variable exponents satisfy

1 < inf
�

p(x) ≤ sup
�

p(x) < ∞
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and

1 < q(x) < p∗(x) :=
{

Np(x)
N−p(x)

if p(x) < N

∞ if p(x) ≥ N.

In this paper we study the behavior of the least Rayleigh quotients when the functions p(x)

and q(x) become arbitrarily large. Our script is based on the paper [8], where these functions are 
constants. Thus, in order to overcome the difficulties imposed by the fact that the exponents de-
pend on x, we adapt arguments developed by Franzina and Lindqvist in [18], where p(x) = q(x). 
Actually, our results in the present paper generalize those of [8] for variable exponents and com-
plement the approach of [18].

In [8], Ercole and Pereira first studied the behavior, when q → ∞, of the positive minimizers 
wq corresponding to

λq := min
{
‖∇u‖Lp(�) : u ∈ W

1,p

0 (�) in ‖u‖Lq(�) = 1
}

,

for a fixed p > N . They obtained a function up ∈ W
1,p
0 (�) as the uniform limit in � of a 

sequence wqn , with qn → ∞. Such a function is positive in �, assumes the maximum value 1 at 
a unique point xp and satisfies {−�pu = �pδxp in �

u = 0 on ∂�,

where

�p := min
{
‖∇u‖Lp(�) : u ∈ W

1,p

0 (�) in ‖u‖L∞(�) = 1
}

and δxp denotes the Dirac delta distribution concentrated at xp. In the sequence, they determined 
the behavior of the pair 

(
�p,up

)
, as p → ∞. In fact, they proved that

lim
p→∞�p = �∞ := inf

0
≡v∈W
1,∞
0 (�)

‖∇v‖∞
‖v‖∞

and that there exist a sequence pn → ∞, a point x∗ ∈ � and a function u∞ ∈ W
1,∞
0 (�) ∩ C(�)

such that: xpn → x∗, ‖d‖∞ = d(x∗), where d is the distance function to the boundary, u∞ ≤
d

‖d‖∞ and upn → u∞ uniformly in �. Moreover, they showed that: u∞ is also a minimizer of �∞, 
assumes its maximum value 1 only at x∗ and satisfies{

�∞u = 0 in �\ {x∗}
u = d

‖d‖∞ on ∂ (�\ {x∗}) = {x∗} ∪ ∂�

in the viscosity sense.
In [18], Franzina and Lindqvist determined the exact asymptotic behavior, as j → ∞, of both 

the minimum �jp(x) of the quotients 
‖∇u‖jp(x)

‖u‖jp(x)
and its respective jp(x)-normalized minimizer uj . 

They proved that

lim
j→∞�jp(x) = �∞
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