ARTICLE IN PRESS

Available online at www.sciencedirect.com

Journal of

Differential Equations

YJDEQ:925

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Improvements on lower bounds for the blow-up time under local nonlinear Neumann conditions

Xin Yang^{a,*}, Zhengfang Zhou^b

^a Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, United States
 ^b Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States

Received 6 July 2017; revised 10 March 2018

Abstract

This paper studies the heat equation $u_t = \Delta u$ in a bounded domain $\Omega \subset \mathbb{R}^n (n \ge 2)$ with positive initial data and a local nonlinear Neumann boundary condition: the normal derivative $\partial u/\partial n = u^q$ on partial boundary $\Gamma_1 \subseteq \partial \Omega$ for some q > 1, while $\partial u/\partial n = 0$ on the other part. We investigate the lower bound of the blow-up time T^* of u in several aspects. First, T^* is proved to be at least of order $(q - 1)^{-1}$ as $q \to 1^+$. Since the existing upper bound is of order $(q - 1)^{-1}$, this result is sharp. Secondly, if Ω is convex and $|\Gamma_1|$ denotes the surface area of Γ_1 , then T^* is shown to be at least of order $|\Gamma_1|^{-\frac{1}{n-1}}$ for $n \ge 3$ and $|\Gamma_1|^{-1}/\ln (|\Gamma_1|^{-1})$ for n = 2 as $|\Gamma_1| \to 0$, while the previous result is $|\Gamma_1|^{-\alpha}$ for any $\alpha < \frac{1}{n-1}$. Finally, we generalize the results for convex domains to the domains with only local convexity near Γ_1 .

MSC: 35B44; 35K60; 35K05; 35C15

Keywords: Blow-up time; Lower bound; Local nonlinear Neumann boundary condition

Corresponding author. *E-mail addresses:* yang2x2@ucmail.uc.edu (X. Yang), zfzhou@math.msu.edu (Z. Zhou).

https://doi.org/10.1016/j.jde.2018.03.013 0022-0396/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: X. Yang, Z. Zhou, Improvements on lower bounds for the blow-up time under local nonlinear Neumann conditions, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.03.013

2

ARTICLE IN PRESS

X. Yang, Z. Zhou / J. Differential Equations ••• (••••) •••-•••

1. Introduction

1.1. Problem and notations

In this paper, unless otherwise stated, Ω represents a bounded open subset in \mathbb{R}^n $(n \ge 2)$ with C^2 boundary $\partial \Omega$. Γ_1 and Γ_2 denote two disjoint relatively open subsets of $\partial \Omega$. $\partial \Gamma_1 = \partial \Gamma_2 \triangleq \widetilde{\Gamma}$ is a common C^1 boundary of Γ_1 and Γ_2 . Moreover, $\Gamma_1 \neq \emptyset$ and $\partial \Omega = \Gamma_1 \cup \widetilde{\Gamma} \cup \Gamma_2$. We study the following problem:

$$u_t(x,t) = \Delta u(x,t) \quad \text{in} \quad \Omega \times (0,T],$$

$$\frac{\partial u(x,t)}{\partial n(x)} = u^q(x,t) \quad \text{on} \quad \Gamma_1 \times (0,T],$$

$$\frac{\partial u(x,t)}{\partial n(x)} = 0 \quad \text{on} \quad \Gamma_2 \times (0,T],$$

$$u(x,0) = u_0(x) \quad \text{in} \quad \Omega,$$

(1.1)

where

$$q > 1, u_0 \in C^1(\overline{\Omega}), u_0(x) \ge 0, u_0(x) \ne 0.$$
 (1.2)

The normal derivative in (1.1) is understood in the following way: for any $(x, t) \in \partial \Omega \times (0, T]$,

$$\frac{\partial u(x,t)}{\partial n(x)} \triangleq \lim_{h \to 0^+} (Du)(x_h,t) \cdot \overrightarrow{n}(x), \tag{1.3}$$

where Du denotes the spatial derivative of u, $\vec{n}(x)$ denotes the exterior unit normal vector at x and $x_h \triangleq x - h\vec{n}(x)$ for $x \in \partial\Omega$. Since $\partial\Omega$ is C^2 , x_h belongs to Ω when h is positive and sufficiently small.

Throughout this paper, we write

$$M_0 = \max_{x \in \overline{\Omega}} u_0(x) \tag{1.4}$$

and denote M(t) to be the supremum of the solution u to (1.1) on $\overline{\Omega} \times [0, t]$:

$$M(t) = \sup_{(x,\tau)\in\overline{\Omega}\times[0,t]} u(x,\tau).$$
(1.5)

 $|\Gamma_1|$ represents the surface area of Γ_1 , that is

$$|\Gamma_1| = \int_{\Gamma_1} dS(x),$$

where dS(x) means the surface integral with respect to the variable x. Φ refers to the fundamental solution to the heat equation:

$$\Phi(x,t) = \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right), \quad \forall (x,t) \in \mathbb{R}^n \times (0,\infty).$$
(1.6)

Please cite this article in press as: X. Yang, Z. Zhou, Improvements on lower bounds for the blow-up time under local nonlinear Neumann conditions, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.03.013

Download English Version:

https://daneshyari.com/en/article/8898690

Download Persian Version:

https://daneshyari.com/article/8898690

Daneshyari.com