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Abstract

We prove the existence and nonexistence of L2(RN)-normalized solutions of coupled Hartree equations,
which arisen from the studies of the nonlinear optics and multi-component Bose—Einstein condensates. Un-
der certain type trapping potentials, by proving some delicate energy estimates, we give a precise description
on the concentration behavior of minimizer solutions of the system. Furthermore, an optimal blowing up
rate for the minimizer solutions of the system is also proved.
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1. Introduction and main results

In the present paper we study the coupled nonlinear Hartree equations with nonlocal interac-
tion in the following form:
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where u, v € H'(RN), i1, w2 > 0, A1, A2 € R are the Lagrange multipliers, Vi (x) and V>(x) are
trapping potentials, and 8 € R is a coupling constant describing attractive or repulsive interac-
tions.

The consideration of (1.1) is mainly motivated by recent studies on the nonlinear Hartree
equation (NHE)

i%:—%Aw—f—Vgﬁ—x(C(x)*|1p|2)w, xeR3. (1.2)
For identical and nonrelativistic basic particles (such as bosons or electrons) under the influ-
ence of an external potential and also two-body attractive interaction between two particles, the
condensate in the mean field regime is governed by the NHE (see [9,10,12,16]). In (1.2), ¥ is
a radially symmetric two-body potential function defined in R? and % denotes the convolution
in R3. The most typical external potential is the Coulomb function C(x) = |x|~'. The equa-
tion (1.2) is also used in the description of the Bose—Einstein condensates, in which V is the
trapping potential and the nonlocal interaction also describes the interaction between the bosons
in the condensate [7,33,34]. When V = 1, the equation (1.2) is also known as the nonlinear
Choquard equation (see [19,22,25]), and the equation (1.2) also arises from the model of wave
propagation in a media with a large response length [1,17]. Recently, the papers [11,25,29,31]
considered the stationary solution of (1.2) with the following generalized Choquard equation

—Au+u=Jy*ulP)ul”u, ue H'R"Y), (1.3)
where J, : RV — R is the Riesz potential defined at each point x € RV \ {0} by
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By using the moving plane method for the nonlocal problem (see [5,6]), Ma and Zhao [25] con-
sidered the existence and the uniqueness of the positive solutions of (1.3). By using the variational
methods, Moroz and Van Schaftingen [29] proved the existence of the ground state solution of
(1.3). Later on, Moroz and Van Schaftingen studied the existence of nontrivial solution of (1.3)
with the lower critical case p = § + 1 in [31], subsequently Ghimenti and Van Schaftingen
proved the existence of nodal and sign-changing solutions of (1.3) in [11]. One can see [30] for
general nonlinearity case.

Systems of coupled nonlinear Schrodinger equations or Hartree equations have been the focus
of many recent theoretical studies. The two-component nonlinear Schrodinger equations system
with nonlocal Hartree type interaction can be written in the following form:
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