

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:925

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Second order smoothness of weak solutions of degenerate linear equations

Richard L. Wheeden

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, United States Received 22 January 2018

Abstract

Let *m* and *n* be positive integers and $\{Y_k(x)\}_{k=1}^m$ be a collection of *m* first order Lipschitz vector field derivatives in a bounded open set $\Omega \subset \mathbb{R}^n$. Given a real-valued function *b* in Ω , we find conditions guaranteeing that a weak solution *u* of $\sum_{k=1}^m Y'_k Y_k u = b$ in Ω has some second order smoothness. More precisely, if *Z* is a first order vector field derivative, we study when the iterated weak derivatives $ZY_k u$ exist in Ω and belong to $L^2_{loc}(\Omega)$. The main theorem extends a result of the author for the special case when m = n and $Z = Y_i$ for some *i*. Corollaries include the existence of $ZX_j u$, $j = 1, \ldots, n$, for weak solutions *u* of divergence form equations div $(Q\nabla u) = b$ if Q(x) is a nonnegative definite, symmetric $n \times n$ matrix and $\{X_j\}_{j=1}^n$ are the derivatives corresponding to the rows of \sqrt{Q} . The reverse orders $Y_k Zu$ and $X_j Zu$ are also considered.

© 2018 Elsevier Inc. All rights reserved.

MSC: 35J70; 35B65; 35D30

Keywords: Degenerate elliptic partial differential equations; Degenerate quadratic forms; Weak solutions; Second order regularity

1. Introduction

Let Ω be a bounded open set in \mathbb{R}^n , *m* be a positive integer, and $\{W_k(x)\}_{k=1}^m$ be a collection of *m* Lipschitz continuous vector fields in Ω . Let $u(x) \in L^2(\Omega)$ and suppose that each weak vector

https://doi.org/10.1016/j.jde.2018.03.012

0022-0396/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: R.L. Wheeden, Second order smoothness of weak solutions of degenerate linear equations, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.03.012

E-mail address: wheeden@math.rutgers.edu.

ARTICLE IN PRESS

R.L. Wheeden / J. Differential Equations $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

field derivative $Y_k u = W_k \cdot \nabla u$, k = 1, ..., m, exists in Ω and belongs to $L^2(\Omega)$. We adopt the standard notation

$$H_{\mathcal{Y}}^{1,2}(\Omega)$$
 with $\mathcal{Y} = \{Y_k = W_k \cdot \nabla\}_{k=1}^m$

for the collection of all such *u*. Here, if *W* is a Lipschitz vector field on Ω and *u* is a function in $L^1_{loc}(\Omega)$, we say as usual that the weak vector field derivative $Yu = W \cdot \nabla u$ exists in Ω if there exists $\mu(x) \in L^1_{loc}(\Omega)$ such that for all $\varphi \in Lip_0(\Omega)$,

$$\int_{\Omega} \mu \varphi \, dx = -\int_{\Omega} u \, Y' \varphi \, dx = -\int_{\Omega} u \operatorname{div}(\varphi W) \, dx$$
$$= -\int_{\Omega} u \left\{ W \cdot \nabla \varphi + \varphi \operatorname{div} W \right\} dx. \tag{1.1}$$

Such μ is clearly unique if it exists, and we then denote $\mu = Yu = W \cdot \nabla u$. Of course, $\nabla \varphi$ exists a.e. in Ω in the usual pointwise sense since $\varphi \in Lip(\Omega)$, but the notation ∇u is an abuse of notation whenever u is a function whose gradient fails to exist in either the pointwise sense or the classical weak sense.

Density of smooth functions will play an important role in our results. By [2], [3] or [5], if $u \in H^{1,2}_{\mathcal{V}}(\Omega)$, there is a sequence $\{u_\ell\}$ of smooth functions in Ω such that

$$\lim_{\ell \to \infty} \left\{ \|u_{\ell} - u\|_{L^{2}(\Omega)} + \|Y_{k}u_{\ell} - Y_{k}u\|_{L^{2}(\Omega)} \right\} = 0 \quad \text{for every } k.$$
(1.2)

We will say that u is represented in $H_{\mathcal{Y}}^{1,2}(\Omega)$ by $\{u_\ell\}$. Conversely, if u is a function in $L^2(\Omega)$ and there is a sequence $\{u_\ell\}$ of smooth functions in Ω (or even just functions in $Lip(\Omega)$) that satisfies (1.2), then $u \in H_{\mathcal{Y}}^{1,2}(\Omega)$, as is easily seen from integration by parts combined with a limit argument. Thus $H_{\mathcal{Y}}^{1,2}(\Omega)$ is characterized by (1.2) just as in the classical result of K. Friedrichs when m = n and the W_k are the standard basis of orthonormal vectors in \mathbb{R}^n . Moreover, if $u \in H_{\mathcal{Y}}^{1,2}(\Omega)$ then for a given open set $\Omega' \subset \subset \Omega$, there are smooth functions

Moreover, if $u \in H_{\mathcal{Y}}^{1,2}(\Omega)$ then for a given open set $\Omega' \subset \subset \Omega$, there are smooth functions u_{ℓ} defined in Ω' (as opposed to Ω) of convolution form $u_{\ell} = u * J_{\varepsilon_{\ell}}$ for a smooth Euclidean approximation of the identity $J_{\varepsilon_{\ell}}(x) = \varepsilon_{\ell}^{-n} J(\varepsilon_{\ell}^{-1}x), \varepsilon_{\ell} \to 0+$, such that (1.2) holds with Ω' in place of Ω , i.e., such that

$$\lim_{\ell \to \infty} \left\{ \|u_{\ell} - u\|_{L^{2}(\Omega')} + \|Y_{k}u_{\ell} - Y_{k}u\|_{L^{2}(\Omega')} \right\} = 0 \quad \text{for every } k.$$
(1.3)

Here, any smooth function J(x) with support in $\{|x| < 1\}$ and $\int_{\mathbb{R}^n} J(x) dx = 1$ can be used, and any sequence $\{\varepsilon_\ell\} \to 0+$ can be used provided $\varepsilon_\ell < dist(\partial \Omega', \partial \Omega)$ for all ℓ .

Reference [3] proves similar density results for higher order iterates of vector field derivatives that will be used below.

It is well known that $H_{\mathcal{V}}^{1,2}(\Omega)$ is a Banach space with norm

$$\|u\|_{H^{1,2}_{\mathcal{Y}}(\Omega)} = \left(\int_{\Omega} u^2 \, dx + \int_{\Omega} \sum_{k=1}^m (Y_k u)^2 \, dx\right)^{\frac{1}{2}}.$$

Please cite this article in press as: R.L. Wheeden, Second order smoothness of weak solutions of degenerate linear equations, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.03.012

Download English Version:

https://daneshyari.com/en/article/8898720

Download Persian Version:

https://daneshyari.com/article/8898720

Daneshyari.com