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Abstract

This paper is concerned with the limit, as the interspecific competition rate goes to infinity, of pulsating
front solutions in space-periodic media for a bistable two-species competition—diffusion Lotka—Volterra
system. We distinguish two important cases: null asymptotic speed and non-null asymptotic speed. In the
former case, we show the existence of a segregated stationary equilibrium. In the latter case, we are able to
uniquely characterize the segregated pulsating front, and thus full convergence is proved. The segregated
pulsating front solves an interesting free boundary problem. We also investigate the sign of the speed as a
function of the parameters of the competitive system. We are able to determine it in full generality, with
explicit conditions depending on the various parameters of the problem. In particular, if one species is
sufficiently more motile or competitive than the other, then it is the invader. This is an extension of our
previous work in space-homogeneous media.
© 2018 Elsevier Inc. All rights reserved.
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Introduction

This is the second part of a sequel to our previous article [24]. In the prequel, we studied
the sign of the speed of bistable traveling wave solutions of the following competition—diffusion
problem:

Oy — Opxur =up (1 —uy) — kuquy in (0,400) xR
oy — doyxur =rup (1 —up) —akuiur in (0, +00) x R.

We proved that, as k — 400, the speed of the traveling wave connecting (1,0) to (0, 1)
converges to a limit which has exactly the sign of &> — rd. In particular, if « = r = 1 and if k
is large enough, the more motile species is the invader: this is what we called the “Unity is not
strength” result.
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