Periodic perturbations with rotational symmetry of planar systems driven by a central force

Alessandro Fonda ${ }^{\text {a, }, *}$, Anna Chiara Gallo ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, I-34127 Trieste, Italy
${ }^{\mathrm{b}}$ SISSA - International School for Advanced Studies, Via Bonomea 265, I-34136 Trieste, Italy

Received 12 December 2017; revised 6 February 2018

Abstract

We consider periodic perturbations of a central force field having a rotational symmetry, and prove the existence of nearly circular periodic orbits. We thus generalize, in the planar case, some previous bifurcation results obtained by Ambrosetti and Coti Zelati in [1]. Our results apply, in particular, to the classical Kepler problem.

© 2018 Elsevier Inc. All rights reserved.

MSC: 34 C 25
Keywords: Kepler problem; Periodic solutions; Rotational symmetric systems

1. Introduction

We study the planar system

$$
\ddot{x}+g(|x|) x=\varepsilon \nabla_{x} V(t, x),
$$

where $g:] 0,+\infty\left[\rightarrow \mathbb{R}\right.$ is a continuously differentiable function and $V: \mathbb{R} \times\left(\mathbb{R}^{2} \backslash\{0\}\right) \rightarrow \mathbb{R}$ is continuous, T-periodic in its first variable, and twice continuously differentiable in its second variable. The real number ε will be considered as a small parameter.

[^0]A particularly important special case of $\left(S_{\varepsilon}\right)$ is illustrated by the perturbed Kepler problem

$$
\ddot{x}+\frac{c}{|x|^{3}} x=\varepsilon \nabla_{x} V(t, x),
$$

where c is a positive constant. This kind of systems has been studied by plenty of authors, mainly with the aim of finding periodic solutions: see, e.g., [1,2,4-6,8-14,17,19]. Let us describe two of these results in detail.

In 1989, Ambrosetti and Coti Zelati [1] considered system $\left(K_{\varepsilon}\right)$ in any dimension, and proved that periodic solutions of period $2 T$ exist assuming the perturbing potential to be even in x, i.e., that

$$
V(t, x)=V(t,-x), \quad \text { for every } t, x
$$

Their method of proof is variational, and provides a bifurcation result from a circular solution $x_{*}(t)$ of (K_{0}) having minimal period $\tau_{*}=2 T / n$, with n odd. (By circular solution we mean a solution whose orbit is a circle centered at the origin.) Indeed, they proved that at least three such solutions $x(t)$ exist, satisfying the symmetry property

$$
x(t+T)=-x(t), \quad \text { for every } t
$$

Recently, the authors of the present paper considered in [10] the case when the perturbing force is radially symmetric, i.e., when $\nabla_{x} V(t, x)=p(t,|x|) x$, for some scalar function $p: \mathbb{R} \times] 0,+\infty\left[\rightarrow \mathbb{R}\right.$. It was proved that, if $x_{*}(t)$ is a circular solution having minimal period τ_{*}, and T / τ_{*} is a rational number n / m which is not an integer, then near this circular solution there are $m T$-periodic solutions $x(t)$ of system $\left(K_{\varepsilon}\right)$ making exactly n rotations around the origin in their period time, provided that $|\varepsilon|$ is small enough. Moreover, $t \mapsto|x(t)|$ is T-periodic, and $t \mapsto \operatorname{Rot}(x,[t, t+T])$ is constant.

Let us recall here that, when $\gamma:\left[\tau_{1}, \tau_{2}\right] \rightarrow \mathbb{R}^{2}$ is a curve such that $\gamma(t) \neq 0$ for every t, writing $\gamma(t)=\rho(t)(\cos \theta(t), \sin \theta(t))$, all functions being continuous, the rotation number around the origin is defined as

$$
\operatorname{Rot}\left(\gamma ;\left[\tau_{1}, \tau_{2}\right]\right)=\frac{\theta\left(\tau_{2}\right)-\theta\left(\tau_{1}\right)}{2 \pi}
$$

In this paper we assume that the perturbing force has a rotational symmetry, i.e., there is a rotation around the origin \mathcal{R}, of angle

$$
\vartheta=\frac{2 \pi}{m}
$$

with m being a positive integer, such that

$$
\begin{equation*}
\nabla_{x} V(t, \mathcal{R} x)=\mathcal{R} \nabla_{x} V(t, x), \quad \text { for every } t, x \tag{1}
\end{equation*}
$$

Notice that, if $m=1$, the above assumption will be trivially satisfied.

https://daneshyari.com/en/article/8898751

Download Persian Version:

https://daneshyari.com/article/8898751

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: a.fonda@units.it (A. Fonda), annachiara.gallo@ sissa.it (A.C. Gallo).

