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Abstract

In this paper we discuss the asymptotic stability as well as the well-posedness of the damped wave 
equation posed on a bounded domain � of Rn, n ≥ 2,

ρ(x)utt − �u +
∞∫

0

g(s)div[a(x)∇u(·, t − s)]ds + b(x)ut = 0,

subject to a locally distributed viscoelastic effect driven by a nonnegative function a(x) and supplemented 
with a frictional damping b(x) ≥ 0 acting on a region A of �, where a = 0 in A. Assuming that ρ(x) is 
constant, considering that the well-known geometric control condition (ω, T0) holds and supposing that 
the relaxation function g is bounded by a function that decays exponentially to zero, we prove that the 
solutions to the corresponding partial viscoelastic model decay exponentially to zero, even in the absence 
of the frictional dissipative effect. In addition, in some suitable cases where the material density ρ(x) is not 
constant, it is also possible to remove the frictional damping term b(x)ut , that is, the localized viscoelastic 
damping is strong enough to assure that the system is exponentially stable. The semi-linear case is also 
considered.
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1. Introduction

1.1. Description of the problem

In this article we establish the well-posedness as well as the exponential decay of solutions u
of the following locally distributed viscoelastic damped wave model with past history

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ(x)utt − �u +
∞∫

0

g(s)div[a(x)∇u(·, t − s)]ds + b(x)ut = 0 in � × (0,∞),

u = 0 on ∂� ×R,

u(x, s) = u0(x, s), ut (x, s) = ∂tu
0(x, s), (x, s) ∈ � × (−∞,0],

(1.1)

where � is an open bounded and connected set of Rn, n ≥ 2, with smooth boundary ∂�. Here, 
ρ(x) > 0 is the density of the material and is given by a smooth function, g represents the 
memory kernel, a(x) ≥ 0 is a smooth function, b(x) ≥ 0 is a bounded function acting effectively 
in a region A of the domain where a = 0 in A and u0 : � × (−∞, 0] → R is the prescribed past 
history of u. The semi-linear version of problem (1.1) will be considered in Section 4.

According to Dafermos [17] and following Giorgi, Rivera and Pata [25], let us define a new 
variable η corresponding to the relative displacement history,

ηt (x, s) = u(x, t) − u(x, t − s), x ∈ �, t ≥ 0, s ∈ (0,∞). (1.2)

Then, proceeding formally, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηt + ηs = ut in � × (0,∞) × (0,∞),

η0(x, s) = u0(x,0) − u0(x,−s), (x, s) ∈ � × (0,∞),

ηt (x,0) := lim
s→0+ ηt (x,0) = 0, (x, t) ∈ � × [0,∞).

(1.3)

From (1.2)–(1.3) and denoting

κ(x) = 1 − g0a(x), x ∈ �, (1.4)

we can rewrite problem (1.1) as the autonomous system
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