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Abstract

In this paper we prove existence and uniqueness of strong solutions to the homogeneous Neumann prob-
lem associated to a parabolic equation with linear growth with respect to the gradient variable. This equation
is a generalization of the time-dependent minimal surface equation. Existence and regularity in time of the
solution is proved by means of a suitable pseudoparabolic relaxed approximation of the equation and a
passage to the limit.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Let @ C RY be a bounded domain with smooth boundary 3. In this paper we consider the
Neumann initial-boundary value problem
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u; =div(a(u, Vu)) in Qr =(0,T) x Q2
v-a(u,Vu) =0 on ST =(0,T) x 92 (P)
U =1ugy in {0} x Q,

where ug € L%(2) and v is the unit outward normal on 9.
Unless otherwise specified, the following assumptions will be made throughout the paper:

(H)) the functiona:R x RY — RV is Lipschitz continuous, a(z, 0) = 0 and

la(z,&)| <1 forall (z,§). (1.1)
Moreover, there exists f : R x RY & R, fe CL(R x RM), convex with respect to &, such
that
9. f(z,6)| < B forall (z,6) e R x RV, (1.2)
and

a(z,&) = Ve f(z,&) forall (z,6) e R x RV,

(H) There exist positive constants Co, Do and C; such that

Colsl = Do < f(z,6) < Ci(Jl+1zl + 1) forevery (z,€) e R x R ; (1.3)

moreover, we also require

[0 &) = lim tf (z, 5) =l (zeR, £eRY). (1.4)
t—0t t
Let us notice that, by the convexity of f,

aiz,8)-£=ai &) n+ f(z.6) - fz,n) (1.5)

and the following monotonicity condition

a(z, &) —a(z,m)-E—-m=0 (1.6)

holds true for any z € R and &, n € RV
In the sequel we shall consider the function 4 : R x RV — R,

h(z,§):=a(z,§)-§. (.7
Itis easy to see that h(z,§) >0 forallze R & € R¥ . In addition, by (1.1) and (1.5) we also get

f(z,8) = f(z,0) =h(z,§) < [§], (1.8)

whence
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