

Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations ••• (••••) •••-••

Journal of Differential Equations

www.elsevier.com/locate/jde

Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks

Alin Pogan a,*, Kevin Zumbrun b

Received 23 March 2017

Abstract

We construct center manifolds for a class of degenerate evolution equations including the steady Boltzmann equation and related kinetic models, establishing in the process existence and behavior of small-amplitude kinetic shock and boundary layers. Notably, for Boltzmann's equation, we show that elements of the center manifold decay in velocity at *near-Maxwellian rate*, in accord with the formal Chapman–Enskog picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying evolution equation.

© 2018 Elsevier Inc. All rights reserved.

Keywords: Degenerate evolution equation; Center manifold; Steady Boltzmann equation; Boltzmann shock profile; Boltzmann boundary layer

Contents

1. Introduction

E-mail addresses: pogana@miamioh.edu (A. Pogan), kzumbrun@indiana.edu (K. Zumbrun).

https://doi.org/10.1016/j.jde.2018.01.049

0022-0396/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: A. Pogan, K. Zumbrun, Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.01.049

^a Miami University, Department of Mathematics, 301 S. Patterson Ave., Oxford, OH 45056, USA

^b Indiana University, Department of Mathematics, 831 E. Third St., Bloomington, IN 47405, USA

^{*} Research of A.P. was partially supported under the Summer Research Grant program, Miami University. Research of K.Z. was partially supported under NSF grant no. DMS-0300487.

Corresponding author.

	1.1.	Formal Chapman–Enskog expansion	4
	1.2.	Main results	6
	1.3.	Discussion and open problems	8
2.	Linearized equations		9
	2.1.	Inhomogeneous equations	
	2.2.	Linear flow in characteristic and noncharacteristic case	
	2.3.	Solutions of the inhomogeneous equation	
3.	Center manifold construction		
	3.1.	Existence of a center manifold of solutions	
	3.2.	C^k smoothness of the center manifold	31
	3.3.	Invariance of the center manifold	37
4.	Appro	ximation of the center manifold	39
	4.1.	Canonical form	39
	4.2.	Taylor expansion	
	4.3.	Center flow	40
	4.4.	Relaxation structure	40
5.	Bifurcation and existence of small-amplitude shock profiles		
	5.1.	Bifurcation from a simple, genuinely nonlinear characteristic	
	5.2.	Bifurcation from a linearly degenerate characteristic	43
6.	Application to Boltzmann's equation		
		Existence and sharp localization in velocity of center manifolds	
	6.2.	Physical behavior	45
• •		Smoothness of substitution operators	
Refere	ences .		55

1. Introduction

In this paper, we study existence and properties of near-equilibrium steady solutions, including in particular small-amplitude shock and boundary layers, of kinetic-type relaxation systems

$$A^0 \mathbf{u}_t + A \mathbf{u}_x = Q(\mathbf{u}), \tag{1.1}$$

on a general Hilbert space \mathbb{H} , where A^0 , A are given (constant) bounded linear operator and Q is a bounded bilinear map (cf. [23,26]). More generally, we study existence and approximation of center manifolds for a class of degenerate evolution equations arising as steady equations

$$A\mathbf{u}' = Q(\mathbf{u}) \tag{1.2}$$

for (1.1), including in particular the steady Boltzmann equation and cousins along with approximants such as BGK and discrete-velocity models [23,26]. Specifically, we are interested in the case when the linear operator A is self-adjoint, bounded, and one-to-one, but *not boundedly invertible*.

Following [23,26], we make the following assumptions on linear operator A and nonlinearity Q.

Hypothesis (H1)

(i) The linear operator *A* is bounded, self-adjoint, and one-to-one on the Hilbert space ℍ;

Please cite this article in press as: A. Pogan, K. Zumbrun, Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.01.049

Download English Version:

https://daneshyari.com/en/article/8898782

Download Persian Version:

https://daneshyari.com/article/8898782

<u>Daneshyari.com</u>