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Abstract

We construct center manifolds for a class of degenerate evolution equations including the steady Boltz-
mann equation and related kinetic models, establishing in the process existence and behavior of small-
amplitude kinetic shock and boundary layers. Notably, for Boltzmann’s equation, we show that elements of
the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman—Enskog
picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment
approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems
point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying
evolution equation.
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1. Introduction

In this paper, we study existence and properties of near-equilibrium steady solutions, including
in particular small-amplitude shock and boundary layers, of kinetic-type relaxation systems

A%, + Au, = Q(u), (1.1

on a general Hilbert space H, where A%, A are given (constant) bounded linear operator and Q
is a bounded bilinear map (cf. [23,26]). More generally, we study existence and approximation
of center manifolds for a class of degenerate evolution equations arising as steady equations

AU = Q(u) (1.2)

for (1.1), including in particular the steady Boltzmann equation and cousins along with approx-
imants such as BGK and discrete-velocity models [23,26]. Specifically, we are interested in the
case when the linear operator A is self-adjoint, bounded, and one-to-one, but not boundedly
invertible.

Following [23,26], we make the following assumptions on linear operator A and nonlinear-
ity Q.
Hypothesis (H1)

(i) The linear operator A is bounded, self-adjoint, and one-to-one on the Hilbert space H;
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