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Abstract

We establish sharp long time asymptotic behaviour for a family of entropies to defective Fokker—Planck
equations and show that, much like defective finite dimensional ODEs, their decay rate is an exponential
multiplied by a polynomial in time. The novelty of our study lies in the amalgamation of spectral theory
and a quantitative non-symmetric hypercontractivity result, as opposed to the usual approach of the entropy
method.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction
1.1. Background

The study of Fokker—Planck equations (sometimes also called Kolmogorov forward equa-
tions) has a long history — going back to the early 20th century. Originally, Fokker and Planck
used their equation to describe Brownian motion in a PDE form, rather than its usual SDE rep-
resentation.

In its most general form, the Fokker—Planck equation reads as

d d
Uft,x) =Y O, (Dij () f (1, %)) = Y 0y, (Ai(x) £ (£, %)), (1.1)

ij=1 i=1

with # > 0,x € R?, and where D; (x), Aj(x) are real valued functions, with D(x) =

The Fokker—Planck equation has many usages in modern mathematics and physics, with con-
nection to statistical physics, plasma physics, stochastic analysis and mathematical finances. For
more information about the equation, we refer the reader to [19]. Here we will consider a very
particular form of (1.1) that allows degeneracies and defectiveness to appear.

1.2. The Fokker—Planck equation in our setting

In this work we will focus our attention on Fokker—Planck equations of the form:

3 f(t,x)=Lf(t, x):=div(DVF(t,x) + Cxf(t,x)), t>0,xecR (1.2)

with appropriate initial conditions, where the matrix D (the diffusion matrix) and C (the drift
matrix) are assumed to be constant and real valued.
In addition to the above, we will also assume the following:

(A) D is a positive semidefinite matrix with
1<r:=rank(D) <d.

(B) All the eigenvalues of C have positive real part (this is sometimes called positively stable).
(C) There exists no non-trivial C” -invariant subspace of Ker (D) (this is equivalent to hypoel-
lipticity of (1.2), cf. [12]).

Each of these conditions has a significant impact on the equation:

e Condition (A) allows the possibility that our Fokker—Planck equation is degenerate (r < d).

e Condition (B) implies that the drift term confines the system. Hence it is crucial for the
existence of a non-trivial steady state to the equation, and

e Condition (C) tells us that when D is degenerate, C compensates for the lack of diffusion in
the appropriate direction and “pushes” the solution back to where diffusion happens.
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