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Abstract

In this paper, we discuss a local energy decay estimate of solutions to the initial-boundary value problem 
for the hyperbolic type Stokes equations of incompressible fluid flow in an exterior domain and a perturbed 
half-space. The equations are linearized version of the hyperbolic Navier–Stokes equations introduced by 
Racke and Saal [15], which are obtained as a delayed case for the deformation tensor in the incompressible 
Navier–Stokes equations. Our proof of the local energy decay estimate is based on Dan and Shibata [2]. In 
[2], they treated the dissipative wave equations in an exterior domain and discussed the local energy decay 
estimate. Our approach uses the fact that applying the Helmholtz projection to the hyperbolic type Stokes 
equations, we obtain equations similar to the dissipative wave ones.
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1. Introduction

Let � be a smooth domain in the n-dimensional Euclidean space Rn (n ≥ 2). We consider 
a motion of incompressible fluid flow occupying � which satisfies the initial-boundary value 
problem:⎧⎪⎨⎪⎩

τutt − ν�u + ut + ∇π + τ∇πt = −τ(u · ∇)ut − ((τut + u) · ∇)u in� × (0,∞),

∇ · u = 0 in� × (0,∞),

u|∂� = 0, (u,ut )|t=0 = (u0, u1)

(1.1)

with unknown vector valued function u = u(x, t) = (u1(x, t), . . . , un(x, t)) and unknown scalar 
valued function π = π(x, t) describing the velocity field and the pressure respectively, where 
x = (x1, . . . , xn) denotes a spatial point of � and t is a time variable. Moreover, ∂� is the 
boundary of �, (u0, u1) is a given initial data and ν > 0 and τ > 0 denote the viscosity coefficient 
and the relaxation parameter satisfying τ < 1 respectively. Here and hereafter, we write

∂m
t =

(
∂

∂t

)m

(m ∈ N ∪ {0}), ∂t = ∂1
t , (ut , utt , πt ) =

(
∂u

∂t
,
∂2u

∂t2 ,
∂π

∂t

)
,

∂k
j = ∂k

∂xk
j

(j = 1, . . . , n, k ∈ N), ∂j = ∂1
j , � =

n∑
j=1

∂2
j , �u = (�u1, . . . ,�un),

∇π = (∂1π, . . . , ∂nπ), ∇ · u =
n∑

j=1

∂juj , w · ∇ =
n∑

j=1

wj∂j ,

where w = (w1, . . . , wn). The equations (1.1) can be derived from the classical Navier–Stokes 
equations as follows. The classical ones determined by Fourier type law are represented by{

ut + (u · ∇)u + ∇π = Div 2S, ∇ · u = 0 in� × (0,∞),

u|∂� = 0, u|t=0 = u0,
(1.2)

where the deformation tensor S = (Sjk)
n
j,k=1 and DivS are given by

Sjk = ν

2
(∂juk + ∂kuj ) and DivS = ( n∑

j=1

∂jSjk

)n
k=1

respectively. In this case, the divergence free condition ∇ · u = 0 implies

Div 2S = ν�u.

On the other hand, Cattaneo type law:

S + τ∂tS = ν

2
(∂juk + ∂kuj )

n
j,k=1 (1.3)
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