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Abstract

This work is devoted to establishing a regularity result for the stress tensor in quasi-static planar isotropic 
linearly elastic – perfectly plastic materials obeying a Drucker–Prager or Mohr–Coulomb yield criterion. 
Under suitable assumptions on the data, it is proved that the stress tensor has a spatial gradient that is 
locally squared integrable. As a corollary, the usual measure theoretical flow rule is expressed in a strong 
form using the quasi-continuous representative of the stress.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Perfect plasticity is a class of models in continuum solid mechanics involving a fixed threshold 
criterion on the Cauchy stress. When the stress is below a critical value, the underlying material 
behaves elastically, while the saturation of the constraint leads to permanent deformations af-
ter unloading back to a stress-free configuration. Elasto-plasticity represents a typical inelastic 
behavior, whose evolution is described by means of an internal variable, the plastic strain.
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To formulate more precisely the problem, let us consider a bounded open set � ⊂ R
n (in 

the following, only the dimension n = 2 will be considered), which stands for the reference 
configuration of an elasto-plastic body. In the framework of small strain elasto-plasticity the 
natural kinematic and static variables are the displacement field u : � × [0, T ] → R

n and the 
stress tensor σ : � × [0, T ] → M

n×n
sym , where Mn×n

sym is the set of n × n symmetric matrices. In 
quasi-statics the equilibrium is described by the system of equations

−divσ = f in � × [0, T ],

for some given body loads f : � × [0, T ] → R
n. Perfect plasticity is characterized by the exis-

tence of a yield zone in which the stress is constrained to remain. The stress tensor must indeed 
belong to a given closed and convex subset K of Mn×n

sym with non empty interior:

σ ∈ K.

If σ lies inside the interior of K , the material behaves elastically, so that unloading will bring the 
body back to its initial configuration. On the other hand, if σ reaches the boundary of K (called 
the yield surface), a plastic flow may develop, so that, after unloading, a non-trivial permanent 
plastic strain will remain. The total linearized strain, denoted by Eu := (Du + (Du)T )/2, is thus 
additively decomposed as

Eu = e + p.

The elastic strain e : � × [0, T ] → M
n×n
sym is related to the stress through the usual Hooke’s law

σ := Ce,

where C is the symmetric fourth order elasticity tensor. The evolution of the plastic strain p :
� × [0, T ] → M

n×n
sym is described by means of the flow rule

ṗ ∈ NK(σ), (1.1)

where NK(σ) is the normal cone to K at σ . From convex analysis, NK(σ) = ∂IK(σ ), i.e., it 
coincides with the subdifferential of the indicator function IK of the set K (where IK(σ ) = 0
if σ ∈ K , while IK(σ ) = +∞ otherwise). Hence, from convex duality, the flow rule can be 
equivalently written as

σ : ṗ = max
τ∈K

τ : ṗ =: H(ṗ), (1.2)

where H :Mn×n
sym → [0, +∞] is the support function of K . This last formulation (1.2) is nothing 

but Hill’s principle of maximum plastic work, and H(ṗ) denotes the plastic dissipation.
Standard models used for most of metals or alloys are those of Von Mises and Tresca. These 

kinds of materials are not sensitive to hydrostatic pressure, and plastic behavior is only generated 
through critical shearing stresses. In these models, if σD := σ − trσ

n
Id stands for the deviatoric 

stress, the elasticity set K is of the form
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