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Abstract

In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive
viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that
permit passing to the limit, we prove that the problem has a solution.
© 2017 Elsevier Inc. All rights reserved.

MSC: primary 35L90; secondary 35R70, 47H04, 47HO05

Keywords: Evolution triple; Compact embedding; Parabolic regularization; Noncoercive viscosity term; A priori bounds

1. Introduction

Let T = [0, b] and let (X, H, X™*) be an evolution triple of spaces, with the embedding of X
into H being compact (see Section 2 for definitions).
In this paper, we study the following nonlinear evolution inclusion:
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u”(t) + A(t,u'(t)) + Bu(t) € F(t,u(t),u'(t)) for almostall t € T,

_ 10) — (1
u(0)=ug, u'(0)=uy.

In the past, such multi-valued problems were studied by Gasinski [3], Gasinski and Smolka
[6,7], Migoérski et al. [11-14], Ochal [15], Papageorgiou, Radulescu and Repovs [16,17], Papa-
georgiou and Yannakakis [18,19]. The works of Gasinski [3], Gasinski and Smolka [6,7] and
Ochal [15], all deal with hemivariational inequalities, that is, F (¢, x, y) = dJ (x) with J(-) being
a locally Lipschitz functional and 9 J (-) denoting the Clarke subdifferential of J(-). In Papageor-
giou and Yannakakis [18,19], the multivalued term F (¢, x, y) is general (not necessarily of the
subdifferential type) and depends also on the time derivative of the unknown function u(-). With
the exception of Gasinski and Smolka [7], in all the other works the viscosity term A(z, -) is
assumed to be coercive or zero. In the work of Gasinski and Smolka [7], the viscosity term is
autonomous (that is, time independent) and A : X — X* is linear and bounded.

In this work, the viscosity term A : T x X — X* is time dependent, noncoercive, nonlinear
and nonmonotone in x € X. In this way, we extend and improve the result of Gasinski and
Smolka [7]. Our approach uses a kind of parabolic regularization of the inclusion, analogous to
the one used by Lions [10, p. 346] in the context of semilinear hyperbolic equations.

2. Mathematical background and hypotheses

Let V, Y be Banach spaces and assume that V' is embedded continuously and densely into Y
(denoted by V < Y). Then we have the following properties:

(i) Y* is embedded continuously into V*;

(i) if V is reflexive, then Y* < V*,

The following notion is a useful tool in the theory of evolution equations.

Definition 1. By an “evolution triple” (or “Gelfand triple”) we understand a triple of spaces
(X, H, X*) such that

(a) X is a separable reflexive Banach space and X* is its topological dual,
(b) H is a separable Hilbert space identified with its dual H*, that is, H = H* (pivot space);
(c) X— H.

Then from the initial remarks we have
X< H=H*"— X*.

In what follows, we denote by || - || the norm of X, by | - | the norm of H and by || - ||« the
norm of X*. Evidently we can find ¢1, ¢; > 0 such that

[-I<éill-lland [[ -]l < &l -]

By (-, -) we denote the inner product of H and by (-, -) the duality brackets for the pair (X*, X).
We have

(- MExx =C,). 2
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