ARTICLE IN PRESS

ELSEVIER

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:9090

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Continuation of homoclinic orbits in the suspension bridge equation: A computer-assisted proof

Jan Bouwe van den Berg^a, Maxime Breden^{b,c}, Jean-Philippe Lessard^{c,d,*}, Maxime Murray^e

^a VU University Amsterdam, Department of Mathematics, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands ^b CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France

^c Université Laval, Département de Mathématiques et de Statistique, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada

^d McGill University, Department of Mathematics and Statistics, 805 Sherbrooke St West, Montreal, QC, H3A 0B9, Canada

^e Florida Atlantic University, Department of Mathematical Sciences, Science Building, Room 234, 777 Glades Road, Boca Raton, FL, 33431, USA

Received 23 February 2017

Abstract

In this paper, we prove existence of symmetric homoclinic orbits for the suspension bridge equation $u''' + \beta u'' + e^u - 1 = 0$ for all parameter values $\beta \in [0.5, 1.9]$. For each β , a parameterization of the stable manifold is computed and the symmetric homoclinic orbits are obtained by solving a projected boundary value problem using Chebyshev series. The proof is computer-assisted and combines the uniform contraction theorem and the radii polynomial approach, which provides an efficient means of determining a set, centered at a numerical approximation of a solution, on which a Newton-like operator is a contraction. © 2017 Published by Elsevier Inc.

Keywords: Suspension bridge equation; Traveling waves; Contraction mapping; Rigorous numerics; Symmetric homoclinic orbits; Stable manifolds

^{*} Corresponding author.

0022-0396/© 2017 Published by Elsevier Inc.

Please cite this article in press as: J.B. van den Berg et al., Continuation of homoclinic orbits in the suspension bridge equation: A computer-assisted proof, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.11.011

E-mail addresses: janbouwe@few.vu.nl (J.B. van den Berg), maxime.breden@ens-cachan.fr (M. Breden), jp.lessard@mcgill.ca (J.-P. Lessard), mmurray2016@fau.edu (M. Murray).

https://doi.org/10.1016/j.jde.2017.11.011

ARTICLE IN PRESS

J.B. van den Berg et al. / J. Differential Equations ••• (••••) •••-•••

1. Introduction

One of the simplest models [15,12] for a suspension bridge is the partial differential equation (PDE)

$$\frac{\partial^2 U}{\partial T^2} = -\frac{\partial^4 U}{\partial X^4} - e^U + 1. \tag{1.1}$$

Here U(T, X) describes the deflection of the roadway from the rest state U = 0 as a function of time T and the spatial variable X (in the direction of traffic). This paper is concerned with traveling wave solutions of (1.1), i.e., solutions U(T, X) = u(X - cT) describing a disturbance with profile u propagating at velocity c along the surface of the bridge. In particular, we apply a computer-assisted proof method to show that there is a large range of velocities for which such a solitary wave exists.

Looking for traveling waves of (1.1) with wave speed c leads to the ordinary differential equation

$$u'''' + c^2 u'' + e^u - 1 = 0. (1.2)$$

For large positive and negative values of the independent variable t = X - cT we assume the solution to converge to the equilibrium u = 0. Due to the reversibility symmetry of the PDE in both time and space, we may restrict our attention to symmetric solutions. Hence, setting $\beta = c^2$, we are looking for symmetric homoclinic orbits satisfying

$$\begin{cases} u''' + \beta u'' + e^{u} - 1 = 0\\ u(-t) = u(t)\\ \lim_{t \to \infty} u(t) = 0. \end{cases}$$
(1.3)

Fourth order differential equations of the form $u''' + \beta u'' + f(u) = 0$ for various nonlinearities f have been studied extensively. For the bistable nonlinearity $f(u) = u^3 - u$ the equation is a standard model in pattern formation, called the Swift-Hohenberg equation (see [18] and references therein), whereas the quadratic nonlinearity $f(u) = u^2 - u$ appears, for example, in the study of water waves [4]. For the piecewise linear case $f(u) = \max\{u, 0\}$ homoclinic solutions were obtained in [15,8]. For the problem with the exponential nonlinearity $f(u) = e^u - 1$ a family of periodic solutions was established in [17].

In [8] the question about existence of a symmetric homoclinic orbit of (1.3) is raised. This question was addressed by variational methods in [21], where the authors proved the result for *almost all* parameter values $\beta \in (0, 2)$. In [20] the existence of homoclinic orbits was demonstrated for all $\beta \in (0, c_*^2) \approx (0, 0.5516)$, again using variational methods as well as intricate estimates on the second variation. In a different direction, using a computer-assisted proof, it was proven in [3] that (1.3) has at least 36 homoclinic solutions for the single parameter value $\beta = 1.69$.

In the present paper we complement the above results by proving the following.

Theorem 1. For all parameter values $\beta \in [0.5, 1.9]$ there exists a symmetric homoclinic orbit of (1.3).

Please cite this article in press as: J.B. van den Berg et al., Continuation of homoclinic orbits in the suspension bridge equation: A computer-assisted proof, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.11.011

Download English Version:

https://daneshyari.com/en/article/8898942

Download Persian Version:

https://daneshyari.com/article/8898942

Daneshyari.com