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Abstract

In this paper, we prove existence of symmetric homoclinic orbits for the suspension bridge equation 
u′′′′ +βu′′ + eu − 1 = 0 for all parameter values β ∈ [0.5, 1.9]. For each β, a parameterization of the stable 
manifold is computed and the symmetric homoclinic orbits are obtained by solving a projected boundary 
value problem using Chebyshev series. The proof is computer-assisted and combines the uniform contrac-
tion theorem and the radii polynomial approach, which provides an efficient means of determining a set, 
centered at a numerical approximation of a solution, on which a Newton-like operator is a contraction.
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1. Introduction

One of the simplest models [15,12] for a suspension bridge is the partial differential equation 
(PDE)

∂2U

∂T 2 = −∂4U

∂X4 − eU + 1. (1.1)

Here U(T , X) describes the deflection of the roadway from the rest state U = 0 as a function 
of time T and the spatial variable X (in the direction of traffic). This paper is concerned with 
traveling wave solutions of (1.1), i.e., solutions U(T , X) = u(X − cT ) describing a disturbance 
with profile u propagating at velocity c along the surface of the bridge. In particular, we apply a 
computer-assisted proof method to show that there is a large range of velocities for which such a 
solitary wave exists.

Looking for traveling waves of (1.1) with wave speed c leads to the ordinary differential 
equation

u′′′′ + c2u′′ + eu − 1 = 0. (1.2)

For large positive and negative values of the independent variable t = X − cT we assume the 
solution to converge to the equilibrium u = 0. Due to the reversibility symmetry of the PDE in 
both time and space, we may restrict our attention to symmetric solutions. Hence, setting β = c2, 
we are looking for symmetric homoclinic orbits satisfying

⎧⎨⎩
u′′′′ + βu′′ + eu − 1 = 0
u(−t) = u(t)

limt→∞ u(t) = 0.

(1.3)

Fourth order differential equations of the form u′′′′ + βu′′ + f (u) = 0 for various nonlinear-
ities f have been studied extensively. For the bistable nonlinearity f (u) = u3 − u the equation 
is a standard model in pattern formation, called the Swift-Hohenberg equation (see [18] and 
references therein), whereas the quadratic nonlinearity f (u) = u2 − u appears, for example, in 
the study of water waves [4]. For the piecewise linear case f (u) = max{u, 0} homoclinic solu-
tions were obtained in [15,8]. For the problem with the exponential nonlinearity f (u) = eu − 1
a family of periodic solutions was established in [17].

In [8] the question about existence of a symmetric homoclinic orbit of (1.3) is raised. This 
question was addressed by variational methods in [21], where the authors proved the result for al-
most all parameter values β ∈ (0, 2). In [20] the existence of homoclinic orbits was demonstrated 
for all β ∈ (0, c2∗) ≈ (0, 0.5516), again using variational methods as well as intricate estimates 
on the second variation. In a different direction, using a computer-assisted proof, it was proven 
in [3] that (1.3) has at least 36 homoclinic solutions for the single parameter value β = 1.69.

In the present paper we complement the above results by proving the following.

Theorem 1. For all parameter values β ∈ [0.5, 1.9] there exists a symmetric homoclinic orbit of 
(1.3).
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