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Abstract

In this paper, we study the quenching rate of the solution for a nonlocal parabolic problem which arises 
in the study of the micro-electro mechanical system. This question is equivalent to the stabilization of the 
solution to the transformed problem in self-similar variables. First, some a priori estimates are provided. In 
order to construct a Lyapunov function, due to the lack of time monotonicity property, we then derive some 
very useful and challenging estimates by a delicate analysis. Finally, with this Lyapunov function, we prove 
that the quenching rate is self-similar which is the same as the problem without the nonlocal term, except 
the constant limit depends on the solution itself.
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1. Introduction

In this paper, we consider the following initial boundary problem

ut = uxx − g(t;u,λ)u−2, −1 < x < 1, t > 0, (1.1)

u(±1, t) = 1, t > 0, (1.2)

u(x,0) = u0(x), x ∈ [−1,1], (1.3)

where

g(t;u,λ) := λ
(

1 +
1∫

−1

u−1(ξ, t)dξ
)−2

. (1.4)

Throughout this paper, we always assume that

u0 is smooth, u0(±1) = 1, 0 < u0(x) � 1, u0(x) = u0(−x),

u′
0(x) � 0, u′′

0(x) � 0 for 0 � x � 1.
(1.5)

Also, we shall simply denote g(t; u, λ) by g(t) when there is no confusion.
The problem (1.1)–(1.3) arises in the study of the micro-electro mechanical system. We refer 

to [27,28] for the physical background of this model. In fact, equation (1.1) is a special case of 
the following general model

εutt + ut = �u − λf (x)

u2

⎛
⎝1 + α

∫
�

u−1(ξ, t)dξ

⎞
⎠

2 , x ∈ �, t > 0, (1.6)

where u represents the distance of the membrane and the ground electrode plate, ε is the ratio of 
the interaction due to the inertial and damping terms, λ is the applied voltage, α � 0 is related to 
the capacitor and f (x) is the varying dielectric properties of the membrane. The model (1.6) has 
been studied extensively, see, e.g., [20,7–9,17,21–23,25,19] for the case ε = 0 (without inertia) 
and [24,18] for the case ε > 0. We also refer the reader to a recent survey paper [16] for more 
details and some open problems.

It is known [17] that

Theorem 1. Let (1.5) hold. Then

(a) the system (1.1)–(1.3) admits a unique classical solution in the maximal existence interval 
[0, T ), i.e., for any small δ > 0, the solution is in the class u ∈ C2+α,(2+α)/2([−1, 1] ×
[0, T − δ]), min|x|�1,0�t�T −δ u(x, t) > 0; furthermore, either T = ∞, or 0 < T < ∞;

(b) for λ suitably large, the maximal existence interval [0, T ) is finite, i.e., solution u(x, t) of 
(1.1)–(1.3) quenches in finite time t = T , and u(0, t) = min|x|�1 u(x, t) → 0 as t → T −. 
Moreover, x = 0 is the only quenching point.
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