

Available online at www.sciencedirect.com

### **ScienceDirect**

J. Differential Equations ••• (•••) •••-••

Journal of Differential Equations

www.elsevier.com/locate/jde

# A limit equation and bifurcation diagrams of semilinear elliptic equations with general supercritical growth \*

# Yasuhito Miyamoto

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
Received 27 January 2017

#### **Abstract**

We study radial solutions of the semilinear elliptic equation

$$\Delta u + f(u) = 0$$

under rather general growth conditions on f. We construct a radial singular solution and study the intersection number between the singular solution and a regular solution. An application to bifurcation problems of elliptic Dirichlet problems is given. To this end, we derive a certain limit equation from the original equation at infinity, using a generalized similarity transformation. Through a generalized Cole–Hopf transformation, all the limit equations can be reduced into two typical cases, i.e.,  $\Delta u + u^p = 0$  and  $\Delta u + e^u = 0$ . © 2017 Elsevier Inc. All rights reserved.

MSC: primary: 35J25, 35B32; secondary: 35J61, 34C10

Keywords: Singular solution; Morse index; Infinitely many positive solutions; Joseph-Lundgren exponent

https://doi.org/10.1016/j.jde.2017.10.034

0022-0396/© 2017 Elsevier Inc. All rights reserved.

<sup>&</sup>lt;sup>†</sup> This work was supported by JSPS KAKENHI Grant Number 16K05225. *E-mail address:* miyamoto@ms.u-tokyo.ac.jp.

#### 1. Introduction and main results

Let  $N \ge 3$  and r := |x|. In this paper we construct a radial singular solution  $u^*(r)$  of the elliptic equation

$$\Delta u + f(u) = 0 \tag{1.1}$$

under rather general growth conditions, and study the intersection number of two radial solutions  $\mathcal{Z}_{(0,\infty)}[u(\cdot,\rho)-u^*(\cdot)]$ . Here,  $u(r,\rho)$  is the classical radial solution of (1.1), which satisfies

$$\begin{cases} u'' + \frac{N-1}{r}u' + f(u) = 0, & r > 0, \\ u(0) = \rho, & \\ u'(0) = 0, \end{cases}$$
 (1.2)

and  $\mathcal{Z}_I[u_0(\cdot) - u_1(\cdot)]$  denotes the intersection number of the two functions  $u_0(r)$  and  $u_1(r)$  defined in an interval  $I \subset \mathbb{R}$ , i.e.,  $\mathcal{Z}_I[u_0(\cdot) - u_1(\cdot)] = \sharp\{r \in I; u_0(r) = u_1(r)\}$ . By a radial singular solution  $u^*(r)$  of (1.1) we mean that  $u^*(r)$  is a classical solution of the equation

$$u'' + \frac{N-1}{r}u' + f(u) = 0 (1.3)$$

on  $(0, r_0)$  for some  $r_0 > 0$  and  $\lim_{r \downarrow 0} u^*(r) = \infty$ . We give two applications of the intersection number.

By F(u) we define

$$F(u) := \int_{u}^{\infty} \frac{dt}{f(t)}.$$

We assume the following:

One of the following 
$$(f1-1)$$
 or  $(f1-2)$  holds:  $(f1)$ 

(a generalization of  $u^p$ )  $f(u) \in C^1[0, \infty), f(u) > 0$  for u > 0, f(0) = 0,

$$f(u) \in C^2(u_0, \infty)$$
 for some  $u_0 > 0$ ,  $\lim_{u \downarrow 0} F(u) = \infty$ , and  $\lim_{u \to \infty} F(u) = 0$ , (f1-1)

(a generalization of  $e^u$ )  $f(u) \in C^1(\mathbb{R}), f(u) > 0$  for  $u \in \mathbb{R}$ ,

$$f(u) \in C^2(u_0, \infty)$$
 for some  $u_0 > 0$ ,  $\lim_{u \to -\infty} F(u) = \infty$ , and  $\lim_{u \to \infty} F(u) = 0$ . (f1-2)

There exists the limit  $q := \lim_{u \to \infty} \frac{f'(u)^2}{f(u) f''(u)}$ ,

which is denoted by q throughout the present paper, and this limit is in  $(0, \infty)$ . (f2)

Note that the inverse function of F, which is denoted by  $F^{-1}(u)$ , can be defined for u > 0, because of (f1). We define the growth rate of f by  $p := \lim_{u \to \infty} u f'(u) / f(u)$ . By L'Hospital's rule we have

## Download English Version:

# https://daneshyari.com/en/article/8898988

Download Persian Version:

https://daneshyari.com/article/8898988

<u>Daneshyari.com</u>