



Available online at www.sciencedirect.com



Journal of Differential

YJDEQ:9045

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Eauations

# Global solvability of the Navier–Stokes equations with a free surface in the maximal $L_p$ - $L_q$ regularity class

Hirokazu Saito

Department of Mathematics, Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

Received 24 July 2017

#### Abstract

We consider the motion of incompressible viscous fluids bounded above by a free surface and below by a solid surface in the N-dimensional Euclidean space for  $N \ge 2$ . The aim of this paper is to show the global solvability of the Navier–Stokes equations with a free surface, describing the above-mentioned motion, in the maximal  $L_p$ - $L_q$  regularity class. Our approach is based on the maximal  $L_p$ - $L_q$  regularity with exponential stability for the linearized equations, and also it is proved that solutions to the original nonlinear problem are exponentially stable.

© 2017 Elsevier Inc. All rights reserved.

MSC: primary 35Q30; secondary 76D05

*Keywords:* Global solvability; Navier–Stokes equations; Free surfaces; Maximal regularity;  $L_p$ - $L_q$  framework; Exponential stability

## 1. Introduction

This paper is concerned with the global solvability of the Navier–Stokes equations with a free surface, describing the motion of incompressible viscous fluids bounded above by a free surface and below by a solid surface in the *N*-dimensional Euclidean space for  $N \ge 2$ , in the maximal  $L_p$ - $L_q$  regularity class (cf. [36] for the class). Such equations were mathematically treated by Beale [6] for the first time. He proved, in an  $L_2$ -in-time and  $L_2$ -in-space setting with

https://doi.org/10.1016/j.jde.2017.09.045

0022-0396/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: H. Saito, Global solvability of the Navier–Stokes equations with a free surface in the maximal  $L_p$ - $L_q$  regularity class, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.09.045

E-mail address: hsaito@aoni.waseda.jp.

## ARTICLE IN PRESS

### H. Saito / J. Differential Equations ••• (••••) •••-•••

the gravity, the local solvability for large initial data in [6], whereas we prove in the maximal  $L_p$ - $L_q$  regularity class the global solvability for small initial data in the case where the gravity is not taken into account in the present paper.

The problem is stated as follows: We are given an initial domain  $\Omega \subset \mathbf{R}^N$ , occupied by an incompressible viscous fluid, such that

$$\Omega = \{\xi = (\xi', \xi_N) \mid \xi' = (\xi_1, \dots, \xi_{N-1}) \in \mathbf{R}^{N-1}, 0 < \xi_N < d\} \quad (d > 0),$$

as well as an initial velocity field  $\mathbf{a} = \mathbf{a}(\xi) = (a_1(\xi), \dots, a_N(\xi))^{T_1}$  of the fluid on  $\Omega$ . The symbols  $\Gamma$ , *S* denote the boundaries of  $\Omega$  such that

$$\Gamma = \{\xi = (\xi', \xi_N) \mid \xi' = (\xi_1, \dots, \xi_{N-1}) \in \mathbf{R}^{N-1}, \xi_N = d\},\$$
  
$$S = \{\xi = (\xi', \xi_N) \mid \xi' = (\xi_1, \dots, \xi_{N-1}) \in \mathbf{R}^{N-1}, \xi_N = 0\}.$$

We wish to find for each  $t \in (0, \infty)$  a transformation  $\Theta = \Theta(\cdot, t) : \Omega \ni \xi \mapsto x = \Theta(\xi, t) \in \mathbf{R}^N$ , a velocity field  $\mathbf{v} = \mathbf{v}(x, t) = (v_1(x, t), \dots, v_N(x, t))^T$  of the fluid, and a pressure field  $\pi = \pi(x, t)$  of the fluid so that

$$\partial_t \Theta = \mathbf{v} \circ \Theta, \quad \Theta(\xi, 0) = \xi, \quad \xi \in \Omega,$$
 (1.1)

$$\Omega(t) = \Theta(\Omega, t), \quad \Gamma(t) = \Theta(\Gamma, t), \quad S = \Theta(S, t), \tag{1.2}$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \text{Div} \, \mathbf{T}(\mathbf{v}, \pi), \quad x \in \Omega(t),$$
(1.3)

$$\operatorname{div} \mathbf{v} = 0, \quad x \in \Omega(t), \tag{1.4}$$

$$\mathbf{T}(\mathbf{v},\pi)\mathbf{n} = -\pi_0 \mathbf{n}, \quad x \in \Gamma(t), \tag{1.5}$$

$$\mathbf{v} = 0, \quad x \in S, \tag{1.6}$$

$$\mathbf{v}|_{t=0} = \mathbf{a}, \quad \xi \in \Omega, \tag{1.7}$$

where  $\mathbf{v} \circ \Theta = (\mathbf{v} \circ \Theta)(\xi, t) = \mathbf{v}(\Theta(\xi, t), t).$ 

Here the density of the fluid have been set to 1; **n** is the unit outward normal to  $\Gamma(t)$ ; the constant  $\pi_0$  is the atmospheric pressure, and it is assumed in this paper that  $\pi_0 = 0$  without loss of generality. The stress tensor  $\mathbf{T}(\mathbf{v}, \pi)$  is given by  $\mathbf{T}(\mathbf{v}, \pi) = \mu \mathbf{D}(\mathbf{v}) - \pi \mathbf{I}$ , where  $\mu$  is a positive constant and denotes the viscosity coefficient of the fluid; **I** is the  $N \times N$  identity matrix;  $\mathbf{D}(\mathbf{v}) = \nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathsf{T}}$  is the doubled strain tensor. Here and subsequently, we use the following notation for differentiations: Let f = f(x),  $\mathbf{g} = (g_1(x), \dots, g_N(x))^{\mathsf{T}}$ , and  $\mathbf{M} = (M_{ij}(x))$  be a scalar-, a vector-, and an  $N \times N$  matrix-valued function on a domain of  $\mathbf{R}^N$ , respectively, and then for  $\partial_i = \partial/\partial x_i$ 

$$\nabla f = (\partial_1 f, \dots, \partial_N f)^{\mathsf{T}}, \quad \Delta f = \sum_{j=1}^N \partial_j^2 f, \quad \Delta \mathbf{g} = (\Delta g_1, \dots, \Delta g_N)^{\mathsf{T}},$$

<sup>&</sup>lt;sup>1</sup>  $\mathbf{M}^{\mathsf{T}}$  denotes the transposed  $\mathbf{M}$ .

Please cite this article in press as: H. Saito, Global solvability of the Navier–Stokes equations with a free surface in the maximal  $L_p$ - $L_q$  regularity class, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.09.045

Download English Version:

## https://daneshyari.com/en/article/8898992

Download Persian Version:

https://daneshyari.com/article/8898992

Daneshyari.com