

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 264 (2018) 2761-2801

www.elsevier.com/locate/jde

On Birman's sequence of Hardy–Rellich-type inequalities

Fritz Gesztesy ^{a,*}, Lance L. Littlejohn ^a, Isaac Michael ^a, Richard Wellman ^b

Received 17 October 2017; revised 31 October 2017 Available online 10 November 2017

Dedicated with great pleasure to Eduard Tsekanovskii on the occasion of his 80th birthday.

Abstract

In 1961, Birman proved a sequence of inequalities $\{I_n\}$, for $n \in \mathbb{N}$, valid for functions in $C_0^n((0,\infty)) \subset L^2((0,\infty))$. In particular, I_1 is the classical (integral) Hardy inequality and I_2 is the well-known Rellich inequality. In this paper, we give a proof of this sequence of inequalities valid on a certain Hilbert space $H_n([0,\infty))$ of functions defined on $[0,\infty)$. Moreover, $f \in H_n([0,\infty))$ implies $f' \in H_{n-1}([0,\infty))$; as a consequence of this inclusion, we see that the classical Hardy inequality implies *each* of the inequalities in Birman's sequence. We also show that for any finite b > 0, these inequalities hold on the standard Sobolev space $H_0^n((0,b))$. Furthermore, in all cases, the Birman constants $[(2n-1)!!]^2/2^{2n}$ in these inequalities are sharp and the only function that gives equality in any of these inequalities is the trivial function in $L^2((0,\infty))$ (resp., $L^2((0,b))$). We also show that these Birman constants are related to the norm of a generalized continuous Cesàro averaging operator whose spectral properties we determine in detail. © 2017 Elsevier Inc. All rights reserved.

MSC: primary 26D10, 34A40, 35A23; secondary 34L10

E-mail addresses: Fritz_Gesztesy@baylor.edu (F. Gesztesy), Lance_Littlejohn@baylor.edu (L.L. Littlejohn), Isaac_Michael@baylor.edu (I. Michael), rwellman@westminstercollege.edu (R. Wellman).

URLs: http://www.baylor.edu/math/index.php?id=935340 (F. Gesztesy),

http://www.baylor.edu/math/index.php?id=53980 (L.L. Littlejohn), http://blogs.baylor.edu/isaac_michael/ (I. Michael), http://www.baylor.edu/math/index.php?id=935340 (R. Wellman).

a Department of Mathematics, Baylor University, One Bear Place #97328, Waco, TX 76798-7328, USA

^b Department of Mathematics, Westminster College, Foster Hall, Salt Lake City, UT 84105-3617, USA

^{*} Corresponding author.

Keywords: Hardy's inequality; Rellich's inequality; Birman's inequalities; Cesàro averaging operators; Mellin transform

Contents

1.	Introduction	2762
2.	An integral inequality	2764
3.	The function spaces $H_n([0,\infty))$ and $\widehat{H}_n((0,\infty))$	2765
4.	A new proof of Birman's sequence of Hardy–Rellich-type inequalities	2772
5.	Optimality of constants	2777
6.	The continuous Cesàro operator T_1 and its generalizations T_n	2780
7.	The Birman inequalities on the finite interval $[0, b]$	2791
8.	The vector-valued case	2794
Ackno	owledgments	2799
Appe	ndix A. Supplementary material	2799
Refer	ences	2800

1. Introduction

In 1961, M.Š. Birman [8, p. 48], sketched a proof to establish the following sequence of inequalities

$$\int_{0}^{\infty} |f^{(n)}(x)|^{2} dx \geqslant \frac{[(2n-1)!!]^{2}}{2^{2n}} \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{2n}} dx, \quad n \in \mathbb{N},$$
(1.1)

valid for $f \in C_0^n((0,\infty))$, the space of *n*-times continuously differentiable complex-valued functions having compact support on $(0,\infty)$. Here we employed the well-known symbol, $(2n-1)!! := (2n-1) \cdot (2n-3) \cdot \cdot \cdot 3 \cdot 1$. We denote the inequality in (1.1) by I_n . In particular, I_1 is the classical (integral) Hardy inequality (see [29, Sect. 7.3])

$$\int_{0}^{\infty} |f'(x)|^{2} dx \geqslant \frac{1}{4} \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{2}} dx, \tag{1.2}$$

and I_2 is the Rellich inequality

$$\int_{0}^{\infty} |f''(x)|^{2} dx \geqslant \frac{9}{16} \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{4}} dx.$$
 (1.3)

We can find no reference in the literature to the general inequality (1.1) prior to the 1966 work of Birman cited above. In [23, pp. 83–84], Glazman gives a detailed proof of (1.1) using the ideas outlined in [8]. In [42, Lemma 2.1], Owen also establishes these inequalities. Each of these authors prove (1.1) for functions on $C_0^n(0,\infty)$. We note in passing that unless $f \equiv 0$, all inequalities (1.1)–(1.3) are strict.

Download English Version:

https://daneshyari.com/en/article/8898994

Download Persian Version:

https://daneshyari.com/article/8898994

Daneshyari.com