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Abstract

In 1961, Birman proved a sequence of inequalities {7, }, for n € N, valid for functions in Cg((O, o)) C

Lz((O, 00)). In particular, I is the classical (integral) Hardy inequality and /5 is the well-known Rellich
inequality. In this paper, we give a proof of this sequence of inequalities valid on a certain Hilbert space
H, ([0, 00)) of functions defined on [0, c0). Moreover, f € Hy ([0, 00)) implies /' € H,,_1([0, 00)); as a
consequence of this inclusion, we see that the classical Hardy inequality implies each of the inequalities in
Birman’s sequence. We also show that for any finite » > 0, these inequalities hold on the standard Sobolev
space H6‘((O, b)). Furthermore, in all cases, the Birman constants [(2n — 1)!!]2 /22’1 in these inequalities
are sharp and the only function that gives equality in any of these inequalities is the trivial function in
L2((0, o0)) (resp., L2((0, b))). We also show that these Birman constants are related to the norm of a
generalized continuous Cesaro averaging operator whose spectral properties we determine in detail.
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1. Introduction

In 1961, M.S. Birman [8, p. 48], sketched a proof to establish the following sequence of
inequalities

00 _ 7 X 2
/|f(”)(x)|2dx > [(anznl)”] / |f;;cn)| dx, neN, (1.1)
0

valid for f € C{((0,00)), the space of n-times continuously differentiable complex-valued
functions having compact support on (0,00). Here we employed the well-known symbol,
2n—-DN':=2n—1)-(2n —3)---3 - 1. We denote the inequality in (1.1) by I,,. In particu-
lar, I is the classical (integral) Hardy inequality (see [29, Sect. 7.3])

/If/(x)|2dx > |f§;)| dx, (1.2)
0 0

and /5 is the Rellich inequality

/}f”(x)|2dx> E/ f(x” (1.3)
0 0

We can find no reference in the literature to the general inequality (1.1) prior to the 1966 work
of Birman cited above. In [23, pp. 83-84], Glazman gives a detailed proof of (1.1) using the
ideas outlined in [8]. In [42, Lemma 2.1], Owen also establishes these inequalities. Each of
these authors prove (1.1) for functions on C (0, 00). We note in passing that unless f = 0, all
inequalities (1.1)—(1.3) are strict.
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