

YJDEQ:9080

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Sharp threshold of blow-up and scattering for the fractional Hartree equation

Qing Guo^a, Shihui Zhu^{b,c,*}

^a College of Science, Minzu University of China, Beijing 100081, China
 ^b School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
 ^c Department of Mathematics, Sichuan Normal University, Chengdu, Sichuan 610066, China

ni of Mainemanes, sienaan wormai Oniversity, enengaa, sienaan ore

Received 12 September 2017

Abstract

We consider the fractional Hartree equation in the L^2 -supercritical case, and find a sharp threshold of the scattering versus blow-up dichotomy for radial data: If $M[u_0]^{\frac{s-s_c}{s_c}} E[u_0] < M[Q]^{\frac{s-s_c}{s_c}} E[Q]$ and $M[u_0]^{\frac{s-s_c}{s_c}} \|u_0\|_{\dot{H}^s}^2 < M[Q]^{\frac{s-s_c}{s_c}} \|Q\|_{\dot{H}^s}^2$, then the solution u(t) is globally well-posed and scatters; if $M[u_0]^{\frac{s-s_c}{s_c}} E[u_0] < M[Q]^{\frac{s-s_c}{s_c}} E[Q]$ and $M[u_0]^{\frac{s-s_c}{s_c}} \|u_0\|_{\dot{H}^s}^2 > M[Q]^{\frac{s-s_c}{s_c}} \|Q\|_{\dot{H}^s}^2$, the solution u(t) blows up in finite time. This condition is sharp in the sense that the solitary wave solution $e^{it}Q(x)$ is global but not scattering, which satisfies the equality in the above conditions. Here, Q is the ground-state solution for the fractional Hartree equation.

© 2017 Elsevier Inc. All rights reserved.

MSC: 35Q40; 35Q55; 47J30

Keywords: Fractional Schrödinger equation; L²-supercritical; Scattering; Blow-up

⁶ Corresponding author. *E-mail addresses:* guoqing0117@163.com (Q. Guo), shihuizhumath@163.com (S. Zhu).

https://doi.org/10.1016/j.jde.2017.11.001 0022-0396/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: Q. Guo, S. Zhu, Sharp threshold of blow-up and scattering for the fractional Hartree equation, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.11.001

2

ARTICLE IN PRESS

Q. Guo, S. Zhu / J. Differential Equations ••• (••••) •••-•••

1. Introduction

In this paper, we study the fractional Hartree equation, which is the L^2 -supercritical, nonlinear, fractional Schrödinger equation.

$$iu_t - (-\Delta)^s u + (\frac{1}{|x|^{\gamma}} * |u|^2)u = 0,$$
(1.1)

with 0 < s < 1 and $2s < \gamma < \min\{N, 4s\}$, where *i* is the imaginary unit and u = u(t, x): $\mathbb{R} \times \mathbb{R}^N \to \mathbb{C}$ is a complex valued function. The operator $(-\Delta)^s$ is defined by

$$(-\Delta)^{s} u = \frac{1}{(2\pi)^{\frac{N}{2}}} \int e^{ix \cdot \xi} |\xi|^{2s} \widehat{u}(\xi) d\xi = \mathcal{F}^{-1}[|\xi|^{2s} \mathcal{F}[u](\xi)],$$

where \mathcal{F} and \mathcal{F}^{-1} are the Fourier transform and the Fourier inverse transform in \mathbb{R}^N , respectively. The fractional Schrödinger equations were first proposed by Laskin in [28,29] using the theory of functionals over functional measures generated from the Lévy stochastic process and by expanding the Feynman path integral from the Brownian-like to the Lévy-like quantum mechanical paths. Here, *s* is the Lévy index. If $s = \frac{1}{2}$ and $\gamma = 1$, then (1.1) models the dynamics of (pseudo-relativistic) boson stars, where $\frac{1}{|x|}$ is the Newtonian gravitational potential in the appropriate physical units, which is also called the pseudo-relativistic Hartree equation (see [10,30]). The global existence and blow-up have been widely studied in [13,31]. For the classical Hartree equation, a large amount of work has been devoted to the theory of scattering and blow-up, see for example [34–37].

Eq. (1.1) is the L^2 -supercritical, nonlinear, fractional Schrödinger equation. Indeed, we remark on the scaling invariance of Eq. (1.1). If u(t, x) is a solution of Eq. (1.1), then $u^{\lambda}(t, x) = \lambda^{\frac{N-\gamma+2s}{2}} u(\lambda^{2s}t, \lambda x)$ is also a solution of Eq. (1.1). This implies that

- (1) $||u^{\lambda}||_{L^{p_c}} = ||u||_{L^{p_c}}$, where $p_c = \frac{2N}{N-\gamma+2s}$. When $\gamma > 2s$, we see that $p_c > 2$, and Eq. (1.1) is called the L^2 -supercritical, nonlinear, fractional Schrödinger equation.
- (2) \dot{H}^{s_c} -norm is invariant for Eq. (1.1), i.e., $\|u^{\lambda}\|_{\dot{H}^{s_c}} = \|u\|_{\dot{H}^{s_c}}$, where $s_c = \frac{\gamma 2s}{2}$.

Now, we impose the initial data,

$$u(0,x) = u_0 \in H^s, \tag{1.2}$$

onto (1.1) and consider the Cauchy problem (1.1)–(1.2). Cho et al. in [7,8] established the local well-posedness in H^s as follows: Let $N \ge 2$, $\frac{1}{2} \le s < 1$ and $0 < \gamma < \min\{N, 4s\}$. If the initial data $u_0 \in H^s$, then there exists a unique solution u(t, x) of the Cauchy problem (1.1)–(1.2) on the maximal time interval I = [0, T) such that $u(t, x) \in C(I; H^s) \bigcap C^1(I; H^{-s})$ and either $T = +\infty$ (global existence) or both $0 < T < +\infty$ and $\lim_{t \to T} ||u(t, x)||_{H^s} = +\infty$ (blow-up). Moreover, for all $t \in I$, u(t, x) satisfies the following conservation laws.

Please cite this article in press as: Q. Guo, S. Zhu, Sharp threshold of blow-up and scattering for the fractional Hartree equation, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.11.001

Download English Version:

https://daneshyari.com/en/article/8898997

Download Persian Version:

https://daneshyari.com/article/8898997

Daneshyari.com