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Abstract

We study 2D Navier–Stokes equations with a constraint forcing the conservation of the energy of the 
solution. We prove the existence and uniqueness of a global solution for the constrained Navier–Stokes 
equation on R2 and T2, by a fixed point argument. We also show that the solution of the constrained 
equation converges to the solution of the Euler equation as the viscosity ν vanishes.
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1. Introduction

The motivation for this paper is twofold. First, Caglioti et al. in [4] studied the well-posedness 
and asymptotic behaviour of two dimensional Navier–Stokes equations in the vorticity form with 
two constraints: constant energy E(ω) and moment of inertia I (ω)
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which can be rewritten as
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where ω = Curl(u), a = a(ω) and b = b(ω) are the Lagrange multipliers associated to those 
constraints and

E(ω) =
∫
R2

ψωdx, I (ω) =
∫
R2

|x|2ωdx, ψ = −�−1ω.

They were able to show the existence of a unique classical global-in-time solution to (1.1) for a 
family of initial data [4, Theorem 5]. They were also able to prove that the solution to (1.1) con-
verges, as time tends to +∞, to the unique solution of an associated microcanonical variational 
problem [4, Theorem 8].

Secondly, Rybka [8] and Caffarelli & Lin [3] studied the linear heat equation with constraints. 
Rybka studied heat flow on a manifold M given by

M =
⎧⎨
⎩u ∈ L2(�) ∩ C(�) :

∫
�

uk(x) dx = Ck, k = 1, . . . ,N

⎫⎬
⎭ ,

where � denotes a connected bounded region in R2 with smooth boundary. He proved [8, Theo-
rem 2.5] the existence of the unique global solution for the projected heat equation

{
du
dt

= �u −∑N
k=1 λku

k−1 in � ⊂R
2,

∂u
∂n

= 0 on ∂�, u(0, x) = u0,
(1.2)

where λk = λk(u) are such that ut is orthogonal to Span
{
uk−1

}
, for a more regular initial data. 

He also showed that the solutions to (1.2) converge to a steady state as time tends to +∞.
On the other hand Caffarelli and Lin initially established the existence and uniqueness of a 

global, energy-conserving solution to the heat equation [3, Theorem 1.1]. They were then able to 
extend these results to more general family of singularly perturbed systems of nonlocal parabolic 
equations [3, Theorem 3.1]. Their main result was to prove the strong convergence of the so-
lutions of these perturbed systems to some weak-solutions of the limiting constrained nonlocal 
heat flows of maps into a singular space.
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