

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Regularity for the evolution of p-harmonic maps

Masashi Misawa¹

Department of Mathematics, Faculty of Sciences Kumamoto University, 2-39-1 Kurokami, Kumamoto-shi, Kumamoto 860-8555, Japan

Received 2 August 2016; revised 11 July 2017

Abstract

This paper presents our study of regularity for p-harmonic map heat flows. We devise a monotonicitytype formula of scaled energy and establish a criterion for a uniform regularity estimate for regular p-harmonic map heat flows. As application we show the small data global in the time existence of regular p-harmonic map heat flow.

© 2017 Elsevier Inc. All rights reserved.

MSC: primary 35D10; secondary 35D05, 35B65, 35K50, 35K65

Keywords: p-Laplacian system; p-Harmonic map heat flow; p-Harmonic map; Regularity; Monotonicity estimate

1. Introduction

Let $\Omega \subset \mathbb{R}^m$ $(m \ge 2)$ be a bounded domain with a smooth boundary, and let \mathcal{N} be an *n*-dimensional smooth compact Riemannian manifold without a boundary assumed to be isometrically embedded in \mathbb{R}^l (l > n). For a smooth map u from Ω to $\mathcal{N} \subset \mathbb{R}^l$ we consider the *p*-energy functional

$$E_p(u) = \int_{\Omega} \frac{1}{p} |Du|^p dx, \qquad (1.1)$$

https://doi.org/10.1016/j.jde.2017.10.006

0022-0396/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: M. Misawa, Regularity for the evolution of p-harmonic maps, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.10.006

E-mail address: mmisawa@kumamoto-u.ac.jp.

¹ The work by M. Masashi was partially supported by a Grant-in-Aid for Scientific Research (C) No. 24540215 at Japan Society for the Promotion of Science.

ARTICLE IN PRESS

M. Misawa / J. Differential Equations ••• (••••) •••-•••

where $p \ge 2$, $u = (u^i)$, i = 1, ..., l, is a vector-valued function, defined on Ω with values in $\mathcal{N} \subset \mathbb{R}^l$. $D_\alpha = \partial/\partial x_\alpha$, $\alpha = 1, ..., m$, $Du = (D_\alpha u^i)$ is the gradient of a map u, $|Du|^2 = \sum_{\alpha=1}^m \sum_{i=1}^l (D_\alpha u^i)^2$. A *p*-harmonic map is defined to be a critical point, which is a solution of the Euler-Lagrange equation of the *p*-energy

$$-\operatorname{div}\left(|Du|^{p-2}Du\right) = |Du|^{p-2}A(u)(Du, Du),$$
(1.2)

where $A(\cdot)(\cdot, \cdot) = \left(\sum_{j, k=1}^{l} A_{jk}^{i}(u) Du^{j} \cdot Du^{k}\right)$ is the second fundamental form of $\mathcal{N} \subset \mathbb{R}^{l}$ (if necessary, the manifold \mathcal{N} is assumed to be orientable). We look for critical points of the *p*-energy (1.1), the *p*-harmonic maps, by considering the negative gradient flow of the *p*-energy referred to as the *p*-harmonic map heat flow

$$\partial_t u - \operatorname{div}\left(|Du|^{p-2}Du\right) = |Du|^{p-2}A(u)(Du, Du).$$
(1.3)

In this paper we consider the regularity of solutions of the p-harmonic map heat flow (1.3).

Here we derive the Euler-Lagrange equation of (1.1) and the gradient flows. Let u be a smooth map from Ω to \mathcal{N} . Let ϕ be a smooth \mathbb{R}^l -vector valued function on Ω with compact support. Take a comparison map $\Pi(u + \tau\phi)$, $\tau \in \mathbb{R}$. Here $\Pi : \mathbb{R}^l \supset \mathcal{O}(\mathcal{N}) \to \mathcal{N} \subset \mathbb{R}^l$ is the nearest point projection from a tubular neighborhood $\mathcal{O}(\mathcal{N}) \subset \mathbb{R}^l$ of \mathcal{N} , to \mathcal{N} . For any sufficient small number τ , $|\tau| \ll |\phi|_{\infty}$, the map $u + \tau\phi$ has its value in $\mathcal{O}(\mathcal{N})$ and thus, $\Pi(u + \tau\phi) \in \mathcal{N}$ is an admissible comparison map. We compute the first variation (the Gâteaux derivative) to have

$$\frac{d}{d\tau}E\left(\Pi(u+\tau\phi)\right)\Big|_{\tau=0} = \int_{\Omega} |Du|^{p-2} \left(Du \cdot D\phi + \phi \cdot \frac{d^2\Pi}{du^2}(u)(Du, Du)\right) dx.$$
(1.4)

Integration by parts in the formula (1.4) = 0 gives us the Euler–Lagrange equation (1.2). Here,

$$\frac{d^2\Pi}{du^2}(u)(Du, Du) = -\left(A^i(u)(Du, Du)\right) = \left(\sum_{j,\,k=1}^l \frac{d^2\Pi^i}{du^j \, du^k}(u)Du^j \cdot Du^k\right), \quad i = 1, 2, \dots, l,$$
(1.5)

is the second fundamental form of $\mathcal{N} \subset \mathbb{R}^l$. For the *p*-energy for smooth maps $u \in C^{\infty}(\Omega, \mathcal{N})$,² its gradient-like vector field $\nabla E(u)$ can be written as³

$$\langle \nabla E(u), \phi \rangle = \frac{d}{d\tau} E\left(\Pi(u + \tau \phi)\right) \Big|_{\tau=0}$$

and then, by (1.4)

Please cite this article in press as: M. Misawa, Regularity for the evolution of p-harmonic maps, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.10.006

² $C^{\infty}(\Omega, \mathcal{N})$ is a Banach manifold.

³ $\langle \nabla E(u), \cdot \rangle$ is a bounded linear functional on a tangent space $\bigcup_{u \in \mathcal{X}} C^{\infty}(\Omega, T_u(\mathcal{N}))$ of the Banach manifold $\mathcal{X} := C^{\infty}(\Omega, \mathcal{N})$.

Download English Version:

https://daneshyari.com/en/article/8899014

Download Persian Version:

https://daneshyari.com/article/8899014

Daneshyari.com