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Abstract

We deal with a stationary problem of a reaction–diffusion system with a conservation law under the Neu-
mann boundary condition. It is shown that the stationary problem turns to be the Euler–Lagrange equation 
of an energy functional with a mass constraint. When the domain is the finite interval (0, 1), we investigate 
the asymptotic profile of a strictly monotone minimizer of the energy as d, the ratio of the diffusion coef-
ficient of the system, tends to zero. In view of a logarithmic function in the leading term of the potential, 
we get to a scaling parameter κ satisfying the relation ε := √

d = √
logκ/κ2. The main result shows that a 

sequence of minimizers converges to a Dirac mass multiplied by the total mass and that by a scaling with 
κ the asymptotic profile exhibits a parabola in the nonvanishing region. We also prove the existence of an 
unstable monotone solution when the mass is small.
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1. Introduction

In the fields of population biology and cell biology concentration phenomena are often ob-
served by aggregation of species and chemical substances respectively. One of the well known 
models is a Keller–Segel chemotaxis model [21] in which spiky patterns appears by the aggre-
gation of cellular slime mold, though it blows up in a higher dimensional domain (for instance, 
see [17], [5], [23], [20], [25] and the references therein). In this model the total mass of the 
slime mold is conserved in a reasonable setting. On the other hand in a study for the cell po-
larity the authors [19] and [7] proposed simple conceptual models to describe the concentration 
phenomenon induced by a different mechanism from the chemotaxis model, though the mass 
conservation property shares in the both models. After their contribution, mathematical studies 
for the conceptual models are developed in [16], [15], [8], [10] and [9] (see also [13], [14], [11]
and [12]). In particular, it is shown in [16], [15] and [8] that the spiky pattern is certainly stable 
in their model equations.

Motivated by those studies, we are concerned with the following reaction–diffusion system:

{
ut = d�u − g(u + γ v) + v,

vt = �v + g(u + γ v) − v,
x ∈ �, (1.1)

with the Neumann boundary condition

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, (1.2)

where � is a bounded domain of Rn with smooth boundary ∂� and 0 < d < 1. We note that 
the diffusion coefficients of u and v equations are normalized: 1 in the v-equation and d in 
the u-equation where d stands for the ratio of the two diffusion coefficients. For specific cases 
g(u) = au/(u2 + b) (γ = 0) and g(w) = w/(w + 1)2 (γ = 1) are provided by [19], where a, b
are positive constants.

Here, we deal with the case for γ = 1 and fix the function g(w) as

g(w) = w

(w + 1)2
.

It is known that there exists a unique nonnegative classical solution satisfying the initial condi-
tion

(u(x,0), v(x,0)) = (u0(x), v0(x)), u0, v0 ∈ C0(�), u0(x) ≥ 0, v0(x) ≥ 0 (x ∈ �)

(see [8] and [9]). Under the evolution of the system, the total mass is conserved:

∫
�

(u(x, t) + v(x, t))dx =
∫
�

(u0(x) + v0(x0))dx (t ≥ 0).
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