ARTICLE IN PRESS

ELSEVIER

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:901

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Asymptotic behavior of equilibrium states of reaction–diffusion systems with mass conservation

Jann-Long Chern^{a,1}, Yoshihisa Morita^{b,2}, Tien-Tsan Shieh^{c,d,*}

^a Department of Mathematics, National Central University, Chung-Li 32001, Taiwan
^b Department of Applied Mathematics and Informatics, Ryukoku University, Seta Otsu 520-2194, Japan
^c National Center for Theoretical Science, National Taiwan University, Taipei 106, Taiwan
^d Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

Received 19 December 2016; revised 5 September 2017

Abstract

We deal with a stationary problem of a reaction–diffusion system with a conservation law under the Neumann boundary condition. It is shown that the stationary problem turns to be the Euler–Lagrange equation of an energy functional with a mass constraint. When the domain is the finite interval (0, 1), we investigate the asymptotic profile of a strictly monotone minimizer of the energy as *d*, the ratio of the diffusion coefficient of the system, tends to zero. In view of a logarithmic function in the leading term of the potential, we get to a scaling parameter κ satisfying the relation $\varepsilon := \sqrt{d} = \sqrt{\log \kappa}/\kappa^2$. The main result shows that a sequence of minimizers converges to a Dirac mass multiplied by the total mass and that by a scaling with κ the asymptotic profile exhibits a parabola in the nonvanishing region. We also prove the existence of an unstable monotone solution when the mass is small.

© 2017 Elsevier Inc. All rights reserved.

MSC: 35B35; 35B40; 35K57

* Corresponding author.

http://dx.doi.org/10.1016/j.jde.2017.09.015

0022-0396/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: J.-L. Chern et al., Asymptotic behavior of equilibrium states of reaction–diffusion systems with mass conservation, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.09.015

E-mail addresses: chern@mx.math.ncu.edu.tw (J.-L. Chern), morita@rins.ryukoku.ac.jp (Y. Morita), ttshieh@ncts.ntu.edu.tw, tshieh@math.ntu.edu.tw (T.-T. Shieh).

¹ Work partially supported by Ministry of Science and Technology of Taiwan under grant MOST-104-2115-M-008-010-MY3.

² Work partially supported by JSPS KAKENHI Grant Number, 26287025, 26247013, JST CREST Grant Number JPMJCR14D3, and a grant for overseas research (Kokugai-kenkyu) of Ryukoku University (2016–2017).

2

J.-L. Chern et al. / J. Differential Equations ••• (••••) •••-•••

Keywords: Reaction–diffusion system; Mass conservation; Equilibrium solution; Asymptotic behavior; Concentration phenomena; Stability

1. Introduction

In the fields of population biology and cell biology concentration phenomena are often observed by aggregation of species and chemical substances respectively. One of the well known models is a Keller–Segel chemotaxis model [21] in which spiky patterns appears by the aggregation of cellular slime mold, though it blows up in a higher dimensional domain (for instance, see [17], [5], [23], [20], [25] and the references therein). In this model the total mass of the slime mold is conserved in a reasonable setting. On the other hand in a study for the cell polarity the authors [19] and [7] proposed simple conceptual models to describe the concentration phenomenon induced by a different mechanism from the chemotaxis model, though the mass conservation property shares in the both models. After their contribution, mathematical studies for the conceptual models are developed in [16], [15], [8], [10] and [9] (see also [13], [14], [11] and [12]). In particular, it is shown in [16], [15] and [8] that the spiky pattern is certainly stable in their model equations.

Motivated by those studies, we are concerned with the following reaction-diffusion system:

$$\begin{cases} u_t = d\Delta u - g(u + \gamma v) + v, \\ v_t = \Delta v + g(u + \gamma v) - v, \end{cases} \qquad x \in \Omega, \tag{1.1}$$

with the Neumann boundary condition

$$\frac{\partial u}{\partial v} = \frac{\partial v}{\partial v} = 0, \qquad x \in \partial\Omega, \tag{1.2}$$

where Ω is a bounded domain of \mathbb{R}^n with smooth boundary $\partial\Omega$ and 0 < d < 1. We note that the diffusion coefficients of u and v equations are normalized: 1 in the v-equation and d in the u-equation where d stands for the ratio of the two diffusion coefficients. For specific cases $g(u) = au/(u^2 + b)$ ($\gamma = 0$) and $g(w) = w/(w + 1)^2$ ($\gamma = 1$) are provided by [19], where a, b are positive constants.

Here, we deal with the case for $\gamma = 1$ and fix the function g(w) as

$$g(w) = \frac{w}{(w+1)^2}.$$

It is known that there exists a unique nonnegative classical solution satisfying the initial condition

$$(u(x,0), v(x,0)) = (u_0(x), v_0(x)), \quad u_0, v_0 \in C^0(\overline{\Omega}), \quad u_0(x) \ge 0, v_0(x) \ge 0 \ (x \in \overline{\Omega})$$

(see [8] and [9]). Under the evolution of the system, the total mass is conserved:

$$\int_{\Omega} (u(x,t)+v(x,t))dx = \int_{\Omega} (u_0(x)+v_0(x_0))dx \qquad (t \ge 0).$$

Please cite this article in press as: J.-L. Chern et al., Asymptotic behavior of equilibrium states of reaction–diffusion systems with mass conservation, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.09.015

Download English Version:

https://daneshyari.com/en/article/8899023

Download Persian Version:

https://daneshyari.com/article/8899023

Daneshyari.com