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Abstract

In this paper we study the global boundedness of solutions to the fully parabolic attraction–repulsion 
chemotaxis system with logistic source: ut = �u −χ∇ · (u∇v) + ξ∇ · (u∇w) +f (u), vt = �v −βv +αu, 
wt = �w − δw + γ u, subject to homogeneous Neumann boundary conditions in a bounded and smooth 
domain 	 ⊂ R

n (n ≥ 1), where χ , α, ξ , γ , β and δ are positive constants, and f : R → R is a smooth 
function generalizing the logistic source f (s) = a − bsθ for all s ≥ 0 with a ≥ 0, b > 0 and θ ≥ 1. It is 
shown that when the repulsion cancels the attraction (i.e. χα = ξγ ), the solution is globally bounded if 

n ≤ 3, or θ > θn := min
{

n+2
4 , n

√
n2+6n+17−n2−3n+4

4

}
with n ≥ 2. Therefore, due to the inhibition of 

repulsion to the attraction, in any spatial dimension, the exponent θ is allowed to take values less than 2
such that the solution is uniformly bounded in time.
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1. Introduction

This paper is concerned with the global boundedness of solutions to the fully parabolic 
attraction–repulsion chemotaxis system with logistic source

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u − χ∇ · (u∇v) + ξ∇ · (u∇w) + f (u), (x, t) ∈ 	 × (0, T ),

vt = �v − βv + αu, (x, t) ∈ 	 × (0, T ),

wt = �w − δw + γ u, (x, t) ∈ 	 × (0, T ),

∂u

∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, (x, t) ∈ ∂	 × (0, T ),

(u(x,0), v(x,0),w(x,0)) = (u0(x), v0(x),w0(x)), x ∈ 	

(1.1)

in a bounded and smooth domain 	 ⊂ R
n (n ≥ 1), where χ , α, ξ , γ , β and δ are positive 

constants, and f : R →R is smooth and satisfies f (0) ≥ 0 as well as

f (s) ≤ a − bsθ for all s ≥ 0 with some a ≥ 0, b > 0 and θ ≥ 1. (1.2)

In addition, ∂/∂ν represents the outer normal derivative on ∂	, and the initial data u0 ∈ C0(	̄)

and v0, w0 ∈ W 1,∞(	) are nonnegative with u0 
≡ 0.
Model (1.1) describes a biological process in which cells (with density u) exhibit two kinds 

of partially oriented movement in response to the chemical signals produced by themselves, 
namely, migrating towards higher concentrations of an attractive signal v (chemoattractant) and 
staying away from a repulsive signal w (chemorepellent) [11,20]. Also, the inhomogeneity f (u), 
comprising a possible proliferation of cells and a growth restriction of logistic type due to (1.2), 
represents the cell kinetic mechanism.

The system (1.1) is a generalized version of the following Keller–Segel model without the 
repulsion

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = �u − χ∇ · (u∇v) + f (u), (x, t) ∈ 	 × (0, T ),

vt = �v − βv + αu, (x, t) ∈ 	 × (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0, (x, t) ∈ ∂	 × (0, T ),

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ 	.

(1.3)

Intuitively, the repulsion in (1.1) benefits the global boundedness of solutions. However, it seems 
that some challenges in the qualitative descriptions of (1.1) have to be confronted due to the 
lack of necessary Lyapunov functionals, and sometimes the blow-up prevention by the repulsion 
is reflected only in some special cases. As comparison, let us briefly recall related literature on 
(1.3), (1.1) and so forth.

(I) The case without growth source, viz. f ≡ 0

The solutions of (1.3) remain globally bounded when either n = 1, or n = 2 and 
∫
	

u0 <

4π/(αχ), or n ≥ 3 and ‖u0‖Ln/2(	) + ‖∇v0‖Ln(	) is sufficiently small [2,7,17,19,27]; whereas 
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