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Abstract

The present paper is concerned with the quasi-neutral and zero-viscosity limits of Navier–Stokes–Poisson 
equations in the half-space. We consider the Navier-slip boundary condition for velocity and Dirichlet 
boundary condition for electric potential. By means of asymptotic analysis with multiple scales, we con-
struct an approximate solution of the Navier–Stokes–Poisson equations involving two different kinds of 
boundary layer, and establish the linear stability of the boundary layer approximations by conormal energy 
estimate.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the quasi-neutral and zero-viscosity limits for the Navier–Stokes–
Poisson (NSP) equations in three dimensional half-space. For space–time variable (t, x) =
(t, x1, x2, x3) = (t, y, x3) ∈ R+ × R

2 × R+, the isothermal NSP equations take the following 
form
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⎧⎨
⎩

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u + T iρI) = ρ∇φ + μ′�u + (μ′ + ν′)∇∇ · u,

λ�φ + e−φ = ρ,

(1.1)

where the unknown functions ρ, u, φ are the density of the fluid, the velocity, electric potential, 
respectively. T i is the average temperature of the ions. λ is a small parameter which represents 
the squared scaled Debye length. μ′ and ν′ are constant viscosity coefficients with μ′ > 0 and 
μ′ + ν′ > 0. This system is used to simulate the behavior of ions in a background of massless 
electrons.

We complete the system (1.1) with the following boundary conditions

u3 = 0, ui − α
∂ui

∂x3
= 0, i = 1,2, φ = φb, (1.2)

on x3 = 0, where φb = φref + φ(y) with φref being a constant and φ(y) is a smooth function. 
The boundary condition on u is the Navier-slip type boundary condition with α > 0 being the 
slip length. This type boundary condition was introduced by Navier in [20] and expresses the 
condition that the velocity on the boundary is proportional to the tangential component of the 
stress. See [10] for an elementary derivation of the Navier boundary condition.

In the present paper, we are interested in the behavior of the system (1.1) with boundary 
condition (1.2) in the regime of small Debye length and zero-viscosity. Small Debye length is 
characteristic for the quasi-neutral limit. Recently, Donatelli, Feireisl and Novotný [4] studied 
such kind of limits for the weak solutions to the problem (1.1)–(1.2) of cold plasma. They ana-
lyzed the associated singular limits and identify the limit problem-incompressible Euler system. 
Moreover, acoustic oscillatory wave was involved in the solutions. However, quite different from 
their work, we are intended to investigate the singular limits (quasi-neutral and zero-viscosity) 
for the smooth solution to the system (1.1)–(1.2). The boundary layers develop due to the inter-
action between plasma and the boundary. Moreover two kinds of boundary layers will develop 
in the process of limits. One is Debye layer because the quasineutrality breaks down near the 
boundary. The other one is because of the zero viscosity limit around the boundary. We will see 
that the former is the strong boundary layer and the latter is the weak one.

For our purpose, we assume that

μ′ = με2, ν′ = νε2, λ = ε2. (1.3)

We consider the behavior of the solution when ε → 0.
Formally, letting ε = 0 in (1.1), we immediately have

⎧⎨
⎩

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u + T iρI) = ρ∇φ,

e−φ = ρ.

(1.4)

Rewriting the above equation, we get the following isothermal Euler equation

{
ρt + ∇ · (ρu) = 0,

ut + u · ∇u + (T i + 1)∇ lnρ = 0.
(1.5)
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