

Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations ••• (••••) •••–•••

Journal of Differential Equations

www.elsevier.com/locate/jde

Optimal solvability for a nonlocal problem at critical growth *

Lorenzo Brasco a,b, Marco Squassina c,*

a Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 35, 44121 Ferrara, Italy
 b Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 39 Rue Frédéric Joliot Curie, 13453 Marseille, France

^c Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, Brescia, Italy Received 22 June 2017; revised 22 September 2017

Abstract

We provide optimal solvability conditions for a nonlocal minimization problem at critical growth involving an external potential function a. Furthermore, we get an existence and uniqueness result for a related nonlocal equation.

© 2017 Elsevier Inc. All rights reserved.

MSC: primary 35R11, 35J92, 35B33; secondary 35A15

Keywords: Brezis-Nirenberg problem; Critical growth problems; Minimization problems

Contents

1.	Introduction	2
	1.1. Overview	2

Corresponding author.

E-mail addresses: lorenzo.brasco@unife.it (L. Brasco), marco.squassina@unicatt.it (M. Squassina).

https://doi.org/10.1016/j.jde.2017.10.019

0022-0396/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: L. Brasco, M. Squassina, Optimal solvability for a nonlocal problem at critical growth, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.10.019

^{\(\phi\)} The authors are members of *Gruppo Nazionale per l'Analisi Matematica*, *la Probabilità e le loro Applicazioni* (GNAMPA) of the *Istituto Nazionale di Alta Matematica* (INdAM). Part of the paper was developed during two visits of the second author at the Dipartimento di Matematica e Informatica of the University of Ferrara in September 2016 and April 2017. The hosting institution is gratefully acknowledged.

	1.2.	Main results
2.	Prelim	inaries
	2.1.	Some known results
	2.2.	Levels of compactness
3.	Analy	sis of the ground state level
4.	Proof	of Theorem 1.1
5.	Proof	of Theorem 1.2
Refer	ences .	

1. Introduction

1.1. Overview

Let Ω be a bounded domain of \mathbb{R}^N with $N \ge 3$. In 1983, in the celebrated paper [5], Brezis and Nirenberg studied the solvability conditions for the semi-linear elliptic problem

$$\begin{cases}
-\Delta u - \lambda u = u^{(N+2)/(N-2)}, & \text{in } \Omega, \\
u > 0, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega.
\end{cases}$$
(1.1)

In particular, if $\lambda_1(\Omega)$ denotes the first eigenvalue of the Dirichlet–Laplacian in Ω , they proved that, if $N \geq 4$, then problem (1.1) admits a solution if $0 < \lambda < \lambda_1(\Omega)$ while for N = 3 there exists $\lambda^* \in (0, \lambda_1)$ such that (1.1) admits a solution if $\lambda^* < \lambda < \lambda_1(\Omega)$ and no solution for $0 < \lambda \leq \lambda^*$. Due to this phenomenon, N = 3 is often referred to in the literature as *critical dimension*.

In general λ^* is not given explicitly, except when Ω is a ball, in which case $\lambda^* = \lambda_1(\Omega)/4$. In addition, there is no solution to (1.1) when $\lambda \ge \lambda_1(\Omega)$ for any domain Ω (see [5, Remark 1.1]) and also for $\lambda < 0$ provided Ω is smooth and star-shaped (see [5, Remark 1.2]).

In the same paper the authors considered, for $N \ge 4$, the non-autonomous critical elliptic problem

$$\begin{cases}
-\Delta u + a u = u^{(N+2)/(N-2)}, & \text{in } \Omega, \\
u > 0, & \text{in } \Omega, \\
u = 0, & \text{on } \partial\Omega,
\end{cases}$$
(1.2)

and obtained the existence of a solution by assuming that $a \in L^{\infty}(\Omega)$ and that there exist $\delta > 0$ and an open subset $\Omega_0 \subset \Omega$ such that

$$a \le -\delta$$
, in Ω_0 ,
$$\int\limits_{\Omega} \left(|\nabla \varphi|^2 + a \, \varphi^2 \right) dx \ge \delta \int\limits_{\Omega} \varphi^2 dx$$
, for all $\varphi \in C_0^{\infty}(\Omega)$,

see [5, Section 4]. About the case of the critical dimension N = 3 for (1.2), no result is stated in [5].

After the striking achievements of [5], many works were devoted to the search of solvability conditions for (possibly sign-changing) solutions of the problem

Download English Version:

https://daneshyari.com/en/article/8899064

Download Persian Version:

https://daneshyari.com/article/8899064

<u>Daneshyari.com</u>