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Abstract

We prove existence of solution for an elliptic system on a bounded domain in dimension two. We use 
the Galerkin scheme in the product of Hilbert spaces. The nonlinearities may have subcritical or critical 
exponential growth.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

We prove existence of solution of the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�v = λvq1 + f (u) in �

−�u = σuq2 + g(v) in �

v,u > 0 in �

v = u = 0 on ∂�,

(1)
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where � ⊂ R
2 is a bounded domain with smooth boundary, λ, σ > 0 are parameters, 0 <

q1, q2 < 1, f, g :R → R is a continuous functions and

0 ≤ f (s)s ≤ C|s|p1 exp(α s2), (2)

0 ≤ g(s)s ≤ C|s|p2 exp(β s2) (3)

where 2 < p1, p2 < ∞, α, β > 0 and C > 0 are constants.

Remark 1.1. The results of this paper also work for a system with u1, ..., um variables and m
equations −�ui = λiu

qi

i + fi(uj ) where j = σ(i), σ : {1, 2, ..., m} → {1, 2, ..., m} is a permuta-
tion such that σk(i) �= i for k = 1, 2, ..., m − 1 and σm(i) = i, the index k stands for composition 
of functions, see [1] for the concept of m-coupled elliptic systems. Conditions (2)–(3) should be 
changed accordingly for each fi .

We state our main result.

Theorem 1.1. Suppose that f, g : R →R are continuous functions satisfying (2) and (3) respec-
tively. Then there exist λ∗, σ ∗ > 0 such that for every λ ∈ (0, λ∗) and σ ∈ (0, σ ∗) the problem (1)
has positive weak solutions v, u ∈ H 1

0 (�) ∩ H 2(�).

A function h has subcritical growth at ∞ if for every γ > 0

lim
s→∞

|h(x, s)|
eγ s2 = 0

The critical growth of h at ∞ means that there is γ0 > 0 such that

lim
s→∞

|h(x, s)|
eγ s2 = 0 ∀γ > γ0 and lim

s→∞
|h(x, s)|

eγ s2 = ∞ ∀γ < γ0.

Equations like −�u = h(x, u) with h having critical or subcritical growth have been studied 
in [2–7]. The Trudinger–Moser inequality [8–10] has a crucial role, since it indicates the space 
of functions one has to work to seek for solutions. The inequality reads as follows. Given u ∈
H 1

0 (�), then

eζ |u|2 ∈ L1(�) for every ζ > 0, (4)

and there exists a positive constant L such that

sup
‖u‖

H1
0 (�)

≤1

∫
�

eξ |u|2dx ≤ L for every ξ ≤ 4π. (5)

Elliptic systems of type ⎧⎨⎩
−�v = f (x, v,u) in �

−�u = g(x, v,u) in �

v = u = 0 on ∂�,

(6)
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