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Abstract

We consider a heteroclinic connection in a planar system, between two symmetric hyperbolic saddles of 
which the eigenvalues are resonant. Starting with a C∞ normal form, defined globally near the connection, 
we normally linearize the vector field by using finitely smooth tags of logarithmic form. We furthermore 
define an asymptotic entry–exit relation, and we discuss on two examples how to deal with counting limit 
cycles near a limit periodic set involving such a connection.
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1. Introduction

There has been extensive research on bounding the number of isolated periodic orbits bifur-
cating from graphics (the cyclicity) in analytic planar vector fields in the context of Hilbert’s 16th 
problem following an idea of Roussarie ([1]). Graphics are formed by a finite sequence of hete-
roclinic connections that together with the connected singular points topologically form a circle. 
For instance in [2] the authors reduce the problem of finding a uniform bound on the number of 

* Corresponding author.
E-mail address: jeroen.wynen@uhasselt.be (J. Wynen).

https://doi.org/10.1016/j.jde.2017.09.042
0022-0396/© 2017 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2017.09.042
http://www.elsevier.com/locate/jde
mailto:jeroen.wynen@uhasselt.be
https://doi.org/10.1016/j.jde.2017.09.042


JID:YJDEQ AID:9042 /FLA [m1+; v1.271; Prn:5/10/2017; 11:17] P.2 (1-33)

2 P. De Maesschalck et al. / J. Differential Equations ••• (••••) •••–•••

Fig. 1. Saddle connection with symmetric q : −p spectrum.

limit cycles in quadratic vector fields to the study of 121 graphics. The classical way to do this 
is by studying the map of first return of such a graphic in order to get an upper bound. However 
these computations tend to be difficult in general especially in a neighbourhood of singularities. 
Using normal form theory (see chapter 2 of [3]) one can simplify the local calculations (e.g. 
near a hyperbolic saddle, see [4]). When the graphic contains non-elementary singularities, for 
example in cuspidal loops (see [5]), one usually uses advanced techniques like a blow-up of the 
vector field near the singularity.

Here we will present a tool that may be useful in dealing with graphics that contain two 
hyperbolic saddles. More specifically, we consider in this paper C∞ vector fields in the plane 
with two hyperbolic saddles A and B having a heteroclinic connection (see Fig. 1). Without loss 
of generality we can assume that A = (−1, 0) and B = (1, 0). We impose that the linearization of 
the vector field about A (resp. about B) has a −p : q (resp. p : −q) resonant spectrum; p and q
positive and relatively prime integers. In this paper, we do not consider unfoldings, i.e. here we do 
not consider families of vector fields in which the parameters either break the saddle connection 
and/or perturb the ratios of eigenvalues. This setting, where the ratios of eigenvalues are fixed 
and the saddle connection is unbroken is often encountered when studying polynomial vector 
fields at ∞, or when blowing up nilpotent or degenerate singular points; the saddle connection is 
then found as a segment on the equator of the blow-up circle.

Under the imposed conditions a C∞ normal form (up to time rescaling) near the connection 
has been obtained in [6]:

{
ẋ = q

2 (1 − x2)

ẏ = y (px + wnf (w) + xwng(w) + χ(x)h(y))) ,
(1)

where w = (1 − x2)pyq and χ is infinitely flat at x = ±1, n ≥ 1 and all occurring functions are 
C∞. For readers familiar with local normal form theory, it might be beneficial to realize that the 
local normal forms about A and B have resonant terms of the form (1 + x)pyq and (1 − x)pyq . 
The expression xwng(w) represents the part of the normal form where B behaves truly reversible 
w.r.t. A; it is the symmetric part. The expression wnf (w) represents the anti-symmetric part. 
The function χ(x)h(y) contains the so-called connecting terms (terminology from [6]); it is only 
present when q �= 1. We will see that these terms may have an effect that is distinguishably 
different from the effect of the resonant terms on the dynamics near the connection.
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