
JID:YJDEQ AID:8934 /FLA [m1+; v1.268; Prn:21/08/2017; 9:08] P.1 (1-24)

Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations ••• (••••) •••–•••
www.elsevier.com/locate/jde

On the number of polynomial solutions of Bernoulli 

and Abel polynomial differential equations

A. Cima, A. Gasull, F. Mañosas ∗

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain

Received 12 June 2017

Abstract

In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equa-
tions and of some integrable polynomial Abel differential equations. As far as we know, the tools used 
to prove our results have not been utilized before for studying this type of questions. We show that the 
addressed problems can be reduced to know the number of polynomial solutions of a related polynomial 
equation of arbitrary degree. Then we approach to these equations either applying several tools developed 
to study extended Fermat problems for polynomial equations, or reducing the question to the computation 
of the genus of some associated planar algebraic curves.
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1. Introduction

In this work we investigate the number of polynomial solutions of some differential equations 
of type

q(t) ẋ = pn(t) xn + pn−1(t) xn−1 + · · · + p1(t) x + p0(t) (1)
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with q and pi polynomials in real or complex coefficients for i = 0, 1, 2, . . . , n, and pn(t) �≡ 0. 
More specifically, we consider the real or complex Bernoulli equation (pn−1 = pn−2 = · · · =
p1 = 0) and some special real Abel equations (n = 3) that will be fixed below.

There are several previous works asking for polynomial solutions of equation (1) for some 
values of n.

When n = 2, equation (1) is the well-known polynomial Riccati equation. In 1936, Rainville 
proved the existence of one or two polynomial solutions when q(t) = 1, see [19]. After, in the pa-
pers [7,8] the authors presented some criteria determining the degree of polynomial solutions of 
q(t) ẋ = p2(t) x2 +p1(t) x +p0(t) and show examples of these equations with 4 or 5 polynomial 
solutions. For them, in [10] the authors gave a complete answer: polynomial Riccati equations 
have at most N + 1 (resp. 2) polynomial solutions when N ≥ 1 (resp. N = 0), where N is the 
maximum degree of q(t), p0(t), p1(t), p2(t); moreover, there are equations of this type having 
any number of polynomial solutions smaller than or equal to these upper bounds.

Also in [2–4] the degrees of the polynomial solutions of (1) are studied. In this setting in [13]
it is shown that the degree of the polynomial solutions of (1) has to belong to a particular set of 
integers depending on the degrees of the coefficients. Finally, in [11] it is proved that equation (1)
with q = 1 has at most n polynomial solutions and that this bound is sharp.

Notice that the question we are interested in is also reminiscent of a similar one proposed by 
Poincaré about the number and degree of the algebraic solutions of planar autonomous polyno-
mial differential systems in terms of their degrees.

Our first result solves completely the problem for Bernoulli equations. It is not difficult to 
prove that linear equations have 0, 1 or all its solutions being polynomials. For instance the equa-
tion (2) with n = 0, ẋ = t , has the solutions x = t2/2 + c, c ∈ C. As we have already explained, 
the case n = 2, is solved in [10]. We include it in next theorem for the sake of completeness.

Theorem A. Consider Bernoulli equations

q(t) ẋ = pn(t) xn + p1(t) x, (2)

with q, pn, p1 ∈C[t] and pn(t) �≡ 0. Then:

(i) For n = 2, equation (2) has at most N +1 (resp. 2) polynomial solutions, where N ≥ 1 (resp. 
N = 0) is the maximum degree of q, p2, p1, and these upper bounds are sharp. Moreover, 
when q, p2, p1 ∈ R[t] these upper bounds are reached with real polynomial solutions.

(ii) For n = 3, equation (2) has at most seven polynomial solutions and this upper bound is 
sharp. Moreover, when q, p3, p1 ∈ R[t] this upper bound is reached with seven polynomial 
solutions belonging to R[t].

(iii) For n ≥ 4, equation (2) has at most 2n − 1 polynomial solutions and this upper bound is 
sharp. Moreover, when q, pn, p1 ∈R[t] it has at most three real polynomial solutions when 
n is even while it has at most five real polynomial solutions when n is odd, and both upper 
bounds are sharp.

Notice also, that in general, given n + 1 arbitrary polynomials x0, x2, . . . , xn there exists al-
ways an equation of the form (1) having these solutions as particular solutions. To get this differ-
ential equation it suffices to plug them in the equation (1) with q = 1 and solve the linear system 
with n +1 unknowns pn, pn−1, . . . , p0. Solving it we obtain a rational differential equation. Mul-
tiplying this equation by the least common multiple of all the denominators of the pj , we obtain 
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