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Abstract

In this paper, we study systems of lattice differential equations of reaction–diffusion type. First, we es-
tablish some basic properties such as the local existence and global uniqueness of bounded solutions. Then 
we proceed to our main goal, which is the study of invariant regions. Our main result can be interpreted as 
an analogue of the weak maximum principle for systems of lattice differential equations. It is inspired by 
existing results for parabolic differential equations, but its proof is different and relies on the Euler approx-
imations of solutions to lattice differential equations. As a corollary, we obtain a global existence theorem 
for nonlinear systems of lattice reaction–diffusion equations. The results are illustrated on examples from 
population dynamics.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The most studied example of a lattice differential equation has the form

∂u

∂t
(x, t) = k(u(x + 1, t) − 2u(x, t) + u(x − 1, t)) + f (u(x, t), x, t), x ∈ Z, t ≥ 0, (1.1)
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where u : Z × [0, ∞) → R is the unknown function. This equation is obtained from the classical 
one-dimensional reaction–diffusion equation

∂u

∂t
(x, t) = k

∂2u

∂x2
(x, t) + f (u(x, t), x, t), x ∈ R, t ∈ [0,∞), (1.2)

by discretizing the space variable. For some applications in biology, chemistry, kinematics or 
population dynamics, the semidiscrete equation seems to be more appropriate than the classical 
reaction–diffusion equation (see, e.g., [2,11,14,21,22]).

For various choices of the reaction function f , numerous authors have studied the properties 
of solutions to Eq. (1.1), such as the asymptotic behavior [4,35,36], existence of traveling wave 
solutions [8,11,24,40,41] or pattern formation [6–8]. On the other hand, the recent papers [30,
31] have focused on well-posedness results and maximum principles for Eq. (1.1) with a general 
reaction function f . Let us mention that the maximum principles are important for the study of 
traveling wave solutions (cf. [24,39]).

Systems of two or more lattice differential equations were also considered by numerous au-
thors. The motivation for the study of such systems often comes from population dynamics – see, 
e.g., [5,16–19,23] and the references there. Again, most papers focus on equations of reaction–
diffusion type with specific choices of the reaction function. A fairly general class of linear lattice 
systems with continuous, discrete or mixed time was studied in [28].

The present paper is devoted to general systems of nonlinear lattice differential equations of 
the form

∂u

∂t
(x, t) = A(x, t)u(x + 1, t) + B(x, t)u(x, t) + C(x, t)u(x − 1, t)

+ f (u(x, t), x, t), x ∈ Z, t ≥ 0, (1.3)

where u takes values in Rm and A, B , C are matrix-valued functions. Obviously, Eq. (1.1) rep-
resents a special case of Eq. (1.3) with m = 1, A(x, t) = C(x, t) = k and B(x, t) = −2k.

In Section 2, we present some basic results on the existence and uniqueness of solutions to 
nonlinear systems of lattice equations. We focus on initial-values problems with bounded initial 
conditions. Such problems generally have infinitely many solutions (see, e.g., [29, Section 3]); 
to get uniqueness, we restrict ourselves to the class of bounded solutions. As explained in [14], 
the space of bounded sequences is a quite natural choice for the study of diffusion-type lattice 
differential equations.

The core of the paper is in Section 3, where we study invariant regions for systems of the form 
(1.3). The invariance results can be interpreted as a generalization of the weak maximum princi-
ple: In the scalar case (1.1), the weak maximum principle says that under suitable assumptions 
on the reaction function f , the values of the solution always remain in the interval determined 
by the infimum and supremum of the initial values. Thus, the interval is an invariant region for 
the given equation. In the higher-dimensional setting, the interval is replaced by a closed con-
vex set S, and the problem is to find sufficient conditions guaranteeing that S is an invariant 
region, i.e., that solutions with initial values in S never leave this set. The key assumption is 
that the vector field f points inward S or is tangent to the boundary at all boundary points of S. 
This condition is well known from the invariance results for classical parabolic equations; see 
[1,9,25,34,38]. The proofs of these classical results are fairly straightforward for bounded spatial 
domains, while the treatment of unbounded domains is more difficult.
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