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RECOVERING A PURELY ATOMIC FINITE MEASURE FROM ITS RANGE

ARTUR BARTOSZEWICZ, SZYMON GŁA̧B, AND JACEK MARCHWICKI

Abstract. Let μ be a purely atomic finite measure. By the range of μ we understand the set rng(μ) = {μ(E) :

E ⊂ N}. We are interested in the two following questions. Which set can be a range of some measure μ? Can

the purely atomic measure μ be uniquely recovered from its range?

1. Introduction

Assume that μ is a purely atomic finite measure. We may assume that μ is defined on N and μ({n}) ≥
μ({n + 1}). Throughout the paper we assume that measures are always purely atomic, finite and they are
defined on N such that their n+1-st atoms have measures not greater than their n-th atoms. We are interested
in the following questions:

• For which subsets R of R there is a measure μ such that R is its range (i.e. R = rng(μ) := {μ(E) :

E ⊂ N})?
• For which subsets R of R there is exactly one measure μ with R = rng(μ)?

To simplify the notation let xn = μ({n}) be a measure of the n-th largest atom of μ. Note that

rng(μ) = {μ(E) : E ⊂ N} = {
∑
n∈E

μ({n}) : E ⊂ N} = {
∞∑

n=1

εnxn : εn = {0, 1}N}.

The latter set is also denoted by A(xn) and it is called the achievement set of (xn) (see [16]). Let us present
here two simple examples.

Example 1.1. Consider the procedure of rolling dice until the value on the dice is less than 5. For E ⊂ N let
μ1(E) be the probability that the procedure stops for some n from E. Then μ1({n}) = 2

3n . It is easy to see
that for xn = μ1({n}) the set A(xn), or rng(μ1), is equal to the classical Cantor ternary set C.

Example 1.2. Consider the procedure of tossing a fair coin until the head appears. For E ⊂ N let μ2(E) be
the probability that the procedure stops for some n from E. Then μ2({n}) = 1

2n and rng(μ2) = [0, 1].

Achievement sets of sequences, defined for all summable sequences (xn), have been considered by many
authors; some results have been rediscovered several times. Let us list basic properties of A(xn) (some of them
were observed by Kakeya in [17] in 1914):

(i) A(xn) is a compact perfect or finite set,
(ii) If |xn| >

∑
i>n |xi| for all sufficiently large n’s, then A(xn) is homeomorphic to the ternary Cantor set

C,
(iii) If |xn| ≤

∑
i>n |xi| for all sufficiently large n’s, then A(xn) is a finite union of closed intervals. Moreover,

if |xn| ≥ |xn+1| for all but finitely many n’s and A(xn) is a finite union of closed intervals, then
|xn| ≤

∑
i>n |xi| for all but finitely many n’s.
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