

Keller-Osserman a priori estimates and the Harnack inequality for the evolution p-Laplace equation with singular absorption

term

I.I. Skrypnik ${ }^{\text {a,b,* }}$

${ }^{\text {a }}$ Institute of Applied Mathematics and Mechanics of NAS of Ukraine, G. Batiouk str. 19,
84100 Slovjansjk, Ukraine
b Vasyl'Stus Donetsk National University, 600-richya str. 21, 21021 Vinnytsia, Ukraine

A R T I C L E I N F O

Article history:

Received 31 December 2017
Available online 25 July 2018
Submitted by A. Cianchi

Keywords:

Large solutions
A priori estimates
Quasilinear parabolic equations
Singular absorption term
Harnack inequality

A B S T R A C T

In this paper we study quasilinear equations of type

$$
u_{t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+V(x) f(u)=0, p \geq 2, u \geq 0
$$

Despite the lack of comparison principle, we prove a priori estimates of KellerOsserman type. Using these estimates we give a proof of the intrinsic Harnack inequality.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper we consider the evolution p-Laplace equation with measurable coefficients and singular lower order term. These classes of equations have numerous applications and have been attracting attention for several decades (see, e.g. the monographs [8,9,22] and references therein).

We study nonnegative solutions to the equation

$$
\begin{equation*}
u_{t}-\operatorname{div} A(x, t, u, \nabla u)+a_{0}(x, u)=0 \tag{1.1}
\end{equation*}
$$

$(x, t) \in \Omega_{T}=\Omega \times(0, T)$ where Ω is a domain in $\mathbb{R}^{n}, n \geq 3$ and $0<T<+\infty$.
Throughout the paper we assume that the functions $A: \Omega \times \mathbb{R}_{+}^{1} \times \mathbb{R}_{+}^{1} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, a_{0}: \Omega \times \mathbb{R}_{+}^{1} \rightarrow \mathbb{R}^{n}$ are such that $A(\cdot, \cdot, u, \varsigma), a_{0}(\cdot, u)$ are Lebesgue measurable for all $u \in \mathbb{R}_{+}^{1}, \varsigma \in \mathbb{R}^{n}$, and $A(x, t, \cdot, \cdot), a_{0}(x, \cdot)$

[^0]https://doi.org/10.1016/j.jmaa.2018.07.046
0022-247X/© 2018 Elsevier Inc. All rights reserved.
are continuous for almost all $x \in \Omega, t \in(0, T)$. We also assume that the following structure conditions are satisfied
\[

$$
\begin{align*}
& A(x, t, u, \varsigma) \varsigma \geq K_{1}|\varsigma|^{p}, p>2 \\
& |A(x, t, u, \varsigma)| \leq K_{2}|\varsigma|^{p-1} \tag{1.2}\\
& K_{1} V(x) f(u) \leq a_{0}(x, u) \leq K_{2} V(x) f(u)
\end{align*}
$$
\]

with some positive constants K_{1}, K_{2}. For the function $V(x)$ we assume that $V \in A_{\infty}$ Muckenhoupt class, i.e. there exist constants $q>1$ and $c_{q}>0$ such that for all $x \in \Omega$ and $B_{r}(x) \in \Omega$, there holds

$$
\begin{equation*}
V\left(B_{r}(x)\right)\left(\int_{B_{r}(x)} V^{-\frac{1}{q-1}}(x) d x\right)^{q-1} \leq c_{q}\left|B_{r}(x)\right|^{q} \tag{1.3}
\end{equation*}
$$

where $V\left(B_{r}(x)\right)=\int_{B_{r}(x)} V(y) d y, B_{r}(x)=\{y:|x-y|<r\}$.
We also assume that $V(x)$ belongs to the nonlinear Kato class, it means that

$$
\begin{equation*}
\sup _{x \in \Omega} W_{1, p}^{V}(x, R)<\infty \tag{1.4}
\end{equation*}
$$

where $W_{1, p}^{V}(x, R)=\int_{0}^{R}\left(r^{p-n} \int_{B_{r}(x)} V(y) d y\right)^{\frac{1}{p-1}} \frac{d r}{r}$.
Example 1. Function $V(x)=|x|^{-p} \ln ^{-\beta_{1}} \frac{1}{|x|}$ satisfies conditions (1.3), (1.4) if $\beta_{1}>p-1$.
For the function f we assume that

$$
\begin{equation*}
f \in C^{1}\left(R_{+}^{1}\right), f>0 \quad f^{\prime} \geq 0 \tag{1.5}
\end{equation*}
$$

and with some $\mu>0$ there holds

$$
\begin{equation*}
\frac{F_{\alpha}(u)}{F_{\alpha}(v)} \leq\left(\frac{u}{v}\right)^{1+\alpha(p-1)+\mu}, \quad 0<u \leq v \tag{1.6}
\end{equation*}
$$

where $F_{\alpha}(u)=\int_{0}^{u} f^{\alpha}(s) d s$ and $\alpha \in\left(0, \frac{1}{q(p+n)}\right)$ is a fixed number.
Example 2. Function $F_{\alpha}(u)$ satisfies condition (1.6) with $\mu=(\beta-p+1) \alpha>0$, if $f(u)=u^{\beta} \widetilde{f}(u), \beta>p-1$ and \widetilde{f} is nondecreasing continuous function. If $f(u)=u^{p-1} \widetilde{f}(u)$, where \widetilde{f} satisfies condition (1.5), $\widetilde{f}(0)=0$ and $\widetilde{f^{\prime}}$ is nondecreasing, then $F_{\alpha}(u)$ satisfies (1.6) with $\mu=\alpha$.

In the sequel we say that a constant depends only upon the data if it depends only upon $K_{1}, K_{2}, p, n, q, c_{q}$ and α.

Before formulating the main results, let us remind the reader the definition of a weak solution to equation (1.1). We say that a nonnegative function $u \in C_{l o c}\left(0, T, L_{l o c}^{2}(\Omega)\right) \bigcap L_{l o c}^{p}\left(0, T, W_{l o c}^{1, p}(\Omega)\right)$ is a weak solution to equation (1.1), if for every subset $E \subset \Omega$ and every interval $\left[t_{1}, t_{2}\right] \subset(0, T]$ the following identity

$$
\begin{equation*}
\left.\int_{E} u \varphi d x\right|_{t_{1}} ^{t_{2}}+\int_{t_{1}}^{t_{2}} \int_{E}\left\{-u \varphi_{t}+A(x, t, u, \nabla u) \nabla \varphi+a_{0}(x, u) \varphi\right\} d x d t=0 \tag{1.7}
\end{equation*}
$$

https://daneshyari.com/en/article/8899184

Download Persian Version:

https://daneshyari.com/article/8899184

Daneshyari.com

[^0]: * Correspondence to: Institute of Applied Mathematics and Mechanics of NAS of Ukraine, G. Batiouk str. 19, 84100 Slovjansjk, Ukraine.

 E-mail address: iskrypnik@iamm.donbass.com.

