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DIFFERENCE OF COMPOSITION OPERATORS BETWEEN
DIFFERENT HARDY SPACES

YECHENG SHI AND SONGXIAO LI∗

ABSTRACT. Some estimates for the norm and essential norm of the dif-
ference of two composition operators between different Hardy spaces
are given in this paper.

Keywords: Hardy space, composition operator, difference, norm, essen-
tial norm.

1. INTRODUCTION

Let D denote the open unit disk of the complex plane C. We denote the
closure and the unit circle of D by D and ∂D, respectively. For a ∈ D,
let σa(z) := a−z

1−āz
be the disc automorphism that exchanges 0 for a. Let

�(a, r) := {z ∈ D : |σa(z)| < r} denote the pseudohyperbolic disk
centered at a with radius r. For two points z, w ∈ D, the pseudohyperbolic
distance is given by

ρ(z, w) = |σw(z)| =
∣∣ z − w

1− w̄z

∣∣.
Let H(D) denote the class of functions analytic in D. Let dm = dθ

2π
de-

note the normalized Lebesgue measure on ∂D. The Lebesgue space Lp(m)
will also be denoted by Lp(∂D), 0 < p < ∞. For 0 < p < ∞, let Hp

denote the Hardy space of all f ∈ H(D) such that

‖f‖pp = sup
0<r<1

∫
∂D

|f(rξ)|pdm(ξ) < ∞.

Recall that if f ∈ Hp(D), then the radial limits limr→1 f(re
iθ) exists almost

everywhere on ∂D and will be denoted also by f , which belongs to Lp(∂D)
and

‖f‖pp =
1

2π

∫ 2π

0

|f(eiθ)|pdθ.
The space H∞(D) consists of all bounded analytic functions on D, and its
norm is given by the supremum norm on D.
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