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In the framework of hot magnetized collisionless plasmas, dispersion relations have 
been extensively studied in the past [2,12,13,24,33,34,38]. This subject is still topical 
in plasma physics [19,27,32,36,42]. The aim of this article is to provide a rigorous 
derivation of the characteristic variety, based on some asymptotic analysis of the 
relativistic Vlasov–Maxwell system. Special emphasis is made on the modeling of 
Tokamaks, with spatial variations of the magnetic field and of the equilibrium 
distribution function. In order to take into account the inhomogeneities, the problem 
is formulated in terms of geometrical optics [29,31]. This allows to unify, justify and 
extend the preceding results. New aspects are indeed included. For instance, the 
dielectric tensor is defined for real frequencies through singular integrals involving 
the Hilbert transform.

© 2018 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Hot magnetized plasmas in axisymmetric configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Relativistic Vlasov–Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Some basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Toroidal equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4. Dimensionless equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5. The hot asymptotic regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. Hot plasma dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1. In the framework of geometric optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Description of the characteristic variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3. Analysis of the conductivity tensor σ(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4. Interesting case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

* Corresponding author.
E-mail addresses: christophe.cheverry@univ-rennes1.fr (C. Cheverry), adrien.fontaine@ens-rennes.fr (A. Fontaine).

https://doi.org/10.1016/j.jmaa.2018.06.045
0022-247X/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2018.06.045
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:christophe.cheverry@univ-rennes1.fr
mailto:adrien.fontaine@ens-rennes.fr
https://doi.org/10.1016/j.jmaa.2018.06.045


JID:YJMAA AID:22361 /FLA Doctopic: Miscellaneous [m3L; v1.238; Prn:25/06/2018; 11:37] P.2 (1-43)
2 C. Cheverry, A. Fontaine / J. Math. Anal. Appl. ••• (••••) •••–•••

1. Introduction

The dispersion relations have been extensively studied in plasma physics. It is because they are involved in 
a wide range of astrophysical contexts and laboratory experiments through wave-particle interaction [23,39], 
transfer of power between waves and particles, heating of plasmas [18], reflectometry techniques [11,21], and 
so on. The preparatory works from the 1960s, 1970s and 1980s [2,12,13,24,33,34,38] are the template for 
recent numerical studies [36,42], for contemporary investigations in more complex situations [19,27,30,32] or, 
like in the present text which is about tokamaks, for developments up to the case of non-uniform magnetized 
plasmas.

In real fusion machines, the dominant distribution function and the external magnetic field are inho-
mogeneous. They undergo significant fluctuations in position. These variations have a major effect on the 
geometry of wave propagation. Their impact is important when performing ray tracing, with many practi-
cal consequences. It becomes decisive when looking at the transport equations (to measure power transfers 
between waves and particles) or in the perspective of long time studies [5,6]. However, the presence of inho-
mogeneities is complicated to simulate. This is probably why, despite some attempts [35,37], this subject has 
not been completely studied. Another reason is, without a doubt, a general principle of physics according 
to which a dispersion relation can be obtained by analyzing a plane monochromatic wave in a homogeneous 
medium, and then letting the medium’s properties (in the dielectric tensor) vary slowly in position. After 
verification, this principle holds true, but it is not so easy to determine what should vary in the dispersion 
relation, why and how. There are questions that remain unanswered. The aim of this article is precisely 
to check what the situation really is. It is to rigorously define the characteristic variety by extracting the 
corresponding dielectric tensor through a comprehensive study. To this end, it is not enough to extend 
existing procedures, which give formal results, provide partial information or rely on specific hypotheses. 
A new approach is needed.

In a plasma, the presence of a strong magnetic field makes the electrons oscillate at the electron cyclotron 
frequency ε−1 with ε � 1. Away from thermal equilibrium, the repartition of the electrons is therefore 
described by oscillating kinetic distribution functions whose structures are exhibited in [6]. This produces 
oscillating currents. Then, by a mesoscopic caustic effect [5], self-consistent oscillating electromagnetic waves 
are emitted. They act like coherent sources [7]. Roughly speaking, it is as if the rays emanate from a smooth 
nonlinear phase φ(t, x). The same applies to waves launching by antennas, in view of the radio frequency 
heating of tokamak plasmas.

It turns out that the propagation of electromagnetic oscillations in a hot quasi-neutral background of 
ions and electrons can be described in the framework of some asymptotic analysis. To some extent, we 
can consider WKB expansions involving a single phase φ(t, x), as in (3.3). From there, the matter is to 
construct for the relativistic Vlasov–Maxwell system an adequate geometrical optics. In comparison with 
usual theories in hyperbolic equations [29,31], new difficulties come from the kinetic resonances which are 
hidden in the self-consistent picture.

As a matter of fact, the propagation of waves is still governed by a dielectric tensor σ(·). But now the 
dielectric property becomes a reactive aspect of the wave-particle interaction. The aim of this article is to 
derive σ(·) from basic principles. Then, it is to rigorously define the content of σ(·) in the domain of real
frequencies. When doing this, complications arise for instance from the singular integrals that play a part 
in the construction of σ(·).

Theorem 1 (Eikonal equation in axisymmetric configurations). There exists a well-defined skew-symmetric 
matrix σ(·) playing the part of a conductivity tensor, such that the eikonal equation governing wave propa-
gation in tokamaks can be determined through the following Hamilton–Jacobi equation:

det
(
∇xφ

t∇xφ + (∂tφ)2 Id− |∇xφ|2 Id + i ∂tφ σ(x, ∂tφ,∇xφ)
)

= 0 . (1.1)
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