ARTICLE IN PRESS

J. Math. Anal. Appl. ••• (••••) •••-••

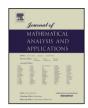
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

New perspectives, proofs, and some extensions of known results are presented

concerning the behavior of the Fitzpatrick function of a monotone type operator in

© 2018 Elsevier Inc. All rights reserved.



YJMAA:22360

www.elsevier.com/locate/jmaa

A priori estimates for the Fitzpatrick function

M.D. Voisei

A R T I C L E I N F O

ABSTRACT

Article history: Received 26 December 2017 Available online xxxx Submitted by A. Daniilidis

To the memory of Jerome S. Cohen (1941–2018)

Keywords: Monotone operator Fitzpatrick function

1. Introduction and preliminaries

Given $T : X \Rightarrow X^*$ a multi-valued operator defined in a locally convex space X with valued in its topological dual X^* , the Fitzpatrick function associated to T (introduced in [1, Definition 3.1, p. 61]) denoted by

the general context of a locally convex space.

$$\varphi_T(x, x^*) := \sup\{a^*(x - a) + x^*(a) \mid (a, a^*) \in \operatorname{Graph} T\}, \ (x, x^*) \in X \times X^*,$$

is an important tool in the theory of maximal monotone operators (see e.g. [1,6,11]).

Here Graph $T = \{(x, x^*) \in X \times X^* \mid x^* \in T(x)\}$ is the graph of T, $D(T) = \Pr_X(\operatorname{Graph} T)$ stands for the domain of T, $R(T) = \Pr_{X^*}(\operatorname{Graph} T) = \bigcup_{x \in D(T)} T(x)$ denotes the range of T, where \Pr_X , \Pr_{X^*} are the projections of $X \times X^*$ onto X, X^* , respectively. When no confusion can occur, $T : X \rightrightarrows X^*$ is identified with $\operatorname{Graph} T \subset X \times X^*$.

Our focus in this note is on the general behavior of φ_T mainly with respect to the coupling of $X \times X^*$ as well as the position of the domain of φ_T in $X \times X^*$.

In this paper, if not otherwise explicitly mentioned, (X, τ) is a Hausdorff separated locally convex space (LCS for short), X^* is its topological dual endowed with the weak-star topology w^* , and the topological dual of (X^*, w^*) is identified with X. For $x \in X$ and $x^* \in X^*$ we set $\langle x, x^* \rangle := x^*(x)$.

For a subset A of X we denote by int A, cl A (or cl_{τ} A when we wish to underline the topology τ , or cl_(X, τ) A if we want to emphasize that $A \subset (X, \tau)$), aff A, and conv A the interior, the closure, the affine

Please cite this article in press as: M.D. Voisei, A priori estimates for the Fitzpatrick function, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2018.06.044

E-mail address: mvoisei@towson.edu.

https://doi.org/10.1016/j.jmaa.2018.06.044

⁰⁰²²⁻²⁴⁷X/© 2018 Elsevier Inc. All rights reserved.

ARTICLE IN PRESS

YJMAA:22360

hull, and the convex hull of A, respectively. If $A, B \subset X$ we set $A + B := \{a + b \mid a \in A, b \in B\}$ with the convention $A + \emptyset := \emptyset + A := \emptyset$.

We consider the class $\Lambda(X)$ of proper convex functions $f: X \to \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$ and the class $\Gamma_{\tau}(X)$ (or simply $\Gamma(X)$) of those functions $f \in \Lambda(X)$ which are τ -lower semicontinuous (lsc for short). Recall that f is proper if dom $f := \{x \in X \mid f(x) < \infty\}$ is nonempty and f does not take the value $-\infty$.

To $f: X \to \overline{\mathbb{R}}$ we associate its *convex hull* conv $f: X \to \overline{\mathbb{R}}$ and its $(\tau)lsc$ convex hull cl conv $f: X \to \overline{\mathbb{R}}$ (cl_{τ} conv f when we want to accentuate on the topology τ) defined by

$$(\operatorname{conv} f)(x) := \inf\{t \in \mathbb{R} \mid (x, t) \in \operatorname{conv}(\operatorname{epi} f)\},\\(\operatorname{cl} \operatorname{conv} f)(x) := \inf\{t \in \mathbb{R} \mid (x, t) \in \operatorname{cl} \operatorname{conv}(\operatorname{epi} f)\},$$

where $\operatorname{epi} f := \{(x, t) \in X \times \mathbb{R} \mid f(x) \leq t\}$ is the *epigraph* of f.

The conjugate of $f: X \to \overline{\mathbb{R}}$ with respect to the dual system (X, X^*) is given by

$$f^*: X^* \to \overline{\mathbb{R}}, \quad f^*(x^*) := \sup\{\langle x, x^* \rangle - f(x) \mid x \in X\}.$$
(1)

The conjugate f^* is a weakly-star (or w^*-) lsc convex function. For the proper function $f: X \to \overline{\mathbb{R}}$ we define the *subdifferential* of f at x by

$$\partial f(x) := \{ x^* \in X^* \mid \langle x' - x, x^* \rangle \le f(x') - f(x) \ \forall x' \in X \},\$$

for $x \in \text{dom } f$ and $\partial f(x) := \emptyset$ for $x \notin \text{dom } f$. Recall that $N_C = \partial \iota_C$ is the normal cone of C, where ι_C is the indicator function of $C \subset X$ defined by $\iota_C(x) := 0$ for $x \in C$ and $\iota_C(x) := \infty$ for $x \in X \setminus C$.

When X^* is endowed with the topology w^* (or with any other locally convex topology σ such that $(X^*, \sigma)^* = X$), in other words, if we take conjugates for functions defined in X^* with respect to the dual system (X^*, X) , then $f^{**} = (f^*)^* = \operatorname{cl} \operatorname{conv} f$ whenever $\operatorname{cl} \operatorname{conv} f$ (or equivalently f^*) is proper.

With respect to the dual system (X, X^*) , the polar of $A \subset X$ is $A^\circ := \{x^* \in X^* \mid |\langle x, x^* \rangle| \le 1, \forall x \in A\}$ while the orthogonal of A is $A^{\perp} := \{x^* \in X^* \mid \langle x, x^* \rangle = 0, \forall x \in A\}$; similarly, the polar of $B \subset X^*$ is $B^\circ := \{x \in X \mid |\langle x, x^* \rangle| \le 1, \forall x^* \in B\}$ while the orthogonal of B is $B^{\perp} := \{x \in X \mid \langle x, x^* \rangle = 0, \forall x^* \in B\}$. Let $Z := X \times X^*$. Consider the coupling function

$$c: Z \to \mathbb{R}, \quad c(z) := \langle x, x^* \rangle \text{ for } z := (x, x^*) \in Z.$$

It is known that the topological dual of $(Z, \tau \times w^*)$ can be (and will be) identified with Z by the coupling

$$z \cdot z' := \langle z, z' \rangle := \langle x, x'^* \rangle + \langle x', x^* \rangle \quad \text{for } z = (x, x^*), \ z' = (x', x'^*) \in Z.$$

With respect to the natural dual system (Z, Z) induced by the previous coupling, the Fitzpatrick function of $T: X \Rightarrow X^*$ has the form

$$\varphi_T: Z \to \overline{\mathbb{R}}, \quad \varphi_T(z) = \sup\{z \cdot \alpha - c(\alpha) \mid \alpha \in \operatorname{Graph} T\},\$$

while the conjugate of $f: \mathbb{Z} \to \overline{\mathbb{R}}$ is denoted by

$$f^{\Box}: Z \to \overline{\mathbb{R}}, \quad f^{\Box}(z) = \sup\{z \cdot z' - f(z') \mid z' \in Z\},$$

and $f^{\Box\Box} = \operatorname{cl}_{\tau \times w^*} \operatorname{conv} f$ whenever f^{\Box} (or $\operatorname{cl}_{\tau \times w^*} \operatorname{conv} f$) is proper.

Note the identity

$$\inf_{\in \text{Graph }T} c(z-\alpha) = (c-\varphi_T)(z).$$
(2)

Please cite this article in press as: M.D. Voisei, A priori estimates for the Fitzpatrick function, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2018.06.044

 $\mathbf{2}$

Download English Version:

https://daneshyari.com/en/article/8899236

Download Persian Version:

https://daneshyari.com/article/8899236

Daneshyari.com