ARTICLE IN PRESS

J. Math. Anal. Appl. ••• (••••) •••-•••

Contents lists available at ScienceDirect

YJMAA:22379

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Surjectivity of Euler operators on temperate distributions

Dietmar Vogt

Bergische Universität Wuppertal, Dept. of Math., Gauß-Str. 20, D-42119 Wuppertal, Germany

ARTICLE INFO

Article history: Received 12 February 2018 Available online xxxx Submitted by J. Bonet

Keywords: Euler differential operators Temperate distributions Global solvability C^{∞} -functions of exponential decay

ABSTRACT

Euler operators are partial differential operators of the form $P(\theta)$ where P is a polynomial and $\theta_j = x_j \partial/\partial x_j$. We show that every non-trivial Euler operator is surjective on the space of temperate distributions on \mathbb{R}^d . This is in sharp contrast to the behaviour of such operators when acting on spaces of differentiable or analytic functions.

© 2018 Elsevier Inc. All rights reserved.

In the present note we study Euler differential operators on the space $\mathscr{S}'(\mathbb{R}^d)$ of temperate distributions on \mathbb{R}^d . These are operators of the form $P(\theta)$ where P is a polynomial and $\theta_i = x_i \partial/\partial x_i$. We show that every Euler operator is surjective on $\mathscr{S}'(\mathbb{R}^d)$ which is in sharp contrast to the behaviour in spaces of differentiable functions since the operator $P(\theta)$ is, in general, singular at the coordinate hyperplanes. Even for d = 1the simple example of θ acting on $C^{\infty}(\mathbb{R})$ shows that surjectivity there is in general impossible. There are natural necessary conditions for a function to be in the range of an operator $P(\theta)$, solvability under these conditions has been shown in Domański–Langenbruch [2]. For real analytic functions the situation is even more complicated, see [1]. As an example our result implies the following: if q is a polynomial function on \mathbb{R}^d then the equation $P(\theta) f = q$ may not have a C^{∞} -solution f on \mathbb{R}^d but it will always have a temperate distribution f as solution on \mathbb{R}^d . We first study partial differential operators $P(\partial)$ with constant coefficients on the space $Y(\mathbb{R}^d)$ of C^{∞} -functions with exponential decay on \mathbb{R}^d and on its dual the space $Y(\mathbb{R}^d)'$ the space of distributions with exponential growth. We show that every non-trivial operator $P(\partial)$ is surjective on $Y(\mathbb{R}^d)'$. By the exponential diffeomorphism this implies the surjectivity of $P(\theta)$ on the space $\mathscr{S}'(Q)$ of temperate distributions on the positive quadrant on \mathbb{R}^d , hence surjectivity on $\mathscr{S}'(\mathbb{R}^d)$ up to a distribution with support in the union of coordinate hyperplanes. By a method similar to the one used in [2] we then show the result by induction on the dimension.

Please cite this article in press as: D. Vogt, Surjectivity of Euler operators on temperate distributions, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2018.06.063

E-mail address: dvogt@math.uni-wuppertal.de.

 $[\]label{eq:https://doi.org/10.1016/j.jmaa.2018.06.063} 0022-247X/©$ 2018 Elsevier Inc. All rights reserved.

ARTICLE IN PRESS

1. Preliminaries

We use the following notation $\partial_j = \partial/\partial x_j$, $\theta_j = x_j \partial_j$ and $D_j = -i\partial_j$. For a multiindex $\alpha \in \mathbb{N}_0^d$ we set $\partial^{\alpha} = \partial_1^{\alpha_1} ... \partial_d^{\alpha_d}$, likewise for θ^{α} and D^{α} . For a polynomial $P(z) = \sum_{\alpha} c_{\alpha} z^{\alpha}$ we consider the Euler operator $P(\theta) = \sum_{\alpha} c_{\alpha} \theta^{\alpha}$ and also the operators $P(\partial)$ and P(D), defined likewise.

 $P(\theta)$ and $P(\partial)$ are connected in the following way. We set for $x \in \mathbb{R}^d$

$$\operatorname{Exp}(x) = (\exp(x_1), .., \exp(x_d)).$$

Exp is a diffeomorphism from \mathbb{R}^d onto $Q := (0, +\infty)^d$. Therefore

$$C_{\operatorname{Exp}}: f \longrightarrow f \circ \operatorname{Exp}$$

is a linear topological isomorphism from $C^{\infty}(Q)$ onto $C^{\infty}(\mathbb{R}^d)$. For $f \in C^{\infty}(Q)$ we have $P(\partial)(f \circ \operatorname{Exp}) = (P(\theta)f) \circ \operatorname{Exp}$ that is $P(\partial) \circ C_{\operatorname{Exp}} = C_{\operatorname{Exp}} \circ P(\theta)$. In this way solvability properties of $P(\theta)$ on $C^{\infty}(Q)$ can be reduced to solvability properties of $P(\partial)$ on $C^{\infty}(\mathbb{R}^d)$. This has been done in [9]. We apply the same argument to the space $\mathscr{S}(Q)$ where $\mathscr{S}(Q) = \{f \in \mathscr{S}(\mathbb{R}^d) : \operatorname{supp} f \subset \overline{Q}\}$ and $\mathscr{S}(\mathbb{R}^d)$ is the Schwartz space of rapidly decreasing C^{∞} -functions on \mathbb{R}^d .

Throughout the paper we use standard notation of Functional Analysis, in particular, of distribution theory, and of the theory of partial differential operators. For unexplained notation we refer to [3], [5], [6], [7], [8].

2. Distributions with exponential growth

We start with studying partial differential operators on \mathbb{R}^d and we will transfer our results by the exponential diffeomorphism to results on Euler operators on Q. We set

$$Y(\mathbb{R}^d) := \{ f \in C^{\infty}(\mathbb{R}^d) : \sup_{x} |f^{(\alpha)}(x)| e^{k|x|} < \infty \text{ for all } \alpha \text{ and } k \in \mathbb{N} \}$$
$$= \{ f \in C^{\infty}(\mathbb{R}^d) : \sup_{x} |f^{(\alpha)}(x)| e^{x\eta} < \infty \text{ for all } \alpha \text{ and } \eta \in \mathbb{R}^d \}$$

with its natural topology. Here $x\eta = \sum_j x_j\eta_j$ and $|x| := |x|_1$.

Then $Y(\mathbb{R}^d)$ is a Fréchet space, closed under convolution and $P(\partial)$ is a continuous linear operator in $Y(\mathbb{R}^d)$ for every polynomial $P. \mathscr{D}(\mathbb{R}^d) \subset Y(\mathbb{R}^d)$ as a dense subspace, hence $Y(\mathbb{R}^d)' \subset \mathscr{D}'(\mathbb{R}^d)$. We obtain

Lemma 2.1. $C_{\text{Exp}}(\mathscr{S}(Q)) = Y(\mathbb{R}^d).$

Proof. We first claim that

$$(f \circ \operatorname{Exp})^{(\alpha)} = \sum_{\beta \le \alpha} a_{\beta} (f^{(\beta)} \circ \operatorname{Exp}) \operatorname{Exp}^{\beta}$$

with $a_{\alpha} = 1$ and this is shown by induction.

This implies that for $f \in \mathscr{S}(Q)$ we have

$$\sup_{x \in \mathbb{R}^d} \left| (f \circ \operatorname{Exp})^{(\alpha)}(x) \right| e^{k|x|} \le \sum_{\beta \le \alpha} a_\beta \sup_{\xi \in Q} |f^{(\beta)}(\xi)| |\xi|^{|\beta|+k} < +\infty$$

for all α and $k \in \mathbb{N}$.

Please cite this article in press as: D. Vogt, Surjectivity of Euler operators on temperate distributions, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2018.06.063

2

Download English Version:

https://daneshyari.com/en/article/8899248

Download Persian Version:

https://daneshyari.com/article/8899248

Daneshyari.com