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Energy decay of a microbeam model1

with a locally distributed nonlinear feedback control2

Patricio Guzmán∗
3

Abstract4

In this paper we address the problem of internal stabilization of the deflection of a microbeam, which5

is modeled by a sixth–order hyperbolic equation. Employing multiplier techniques and an integral6

inequality, we prove that a locally distributed nonlinear feedback control forces the energy associated7

to the deflection to decay exponentially or polynomially to zero. As a consequence of this, the deflection8

goes to the rest position as the time goes to infinity.9
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1 Introduction13

A microbeam is a beam whose dimensions are in the order of a few microns. According to14

[26, Chapter 6], the microbeams are perhaps the most common structural component used in micro–15

electro–mechanical systems (MEMS) such as actuators, filters, resonators and sensors.16

17

The deflection z = z(t, x) of a clamped microbeam of density ρ > 0, cross–sectional area A > 0,18

Young’s modulus E > 0, area moment of inertia I > 0, shear modulus G > 0 and length L > 0 being19

subjected to a distributed load f = f(t, x) can be modeled by20

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρAztt +M1zxxxx −M2zxxxxxx = f, (t, x) ∈ (0,∞)× (0, L),

z(t, 0) = zx(t, 0) = zxx(t, 0) = 0, t ∈ (0,∞),

z(t, L) = zx(t, L) = zxx(t, L) = 0, t ∈ (0,∞),

z(0, x) = z0(x), x ∈ (0, L),

zt(0, x) = z1(x), x ∈ (0, L).

(1.1)

This model has been derived in [12, Section 3] and [17, Section 4] by using the modified strain gradient21

elasticity theory developed in [19, Section 2] together with Hamilton’s Principle. Here22

M1 = EI +GA

(
2l20 +

8

15
l21 + l22

)
and M2 = GA

(
2l20 +

4
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)
,
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