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SOME REMARKS ON NON-SYMMETRIC POLARIZATION

FELIPE MARCECA

Abstract. Let P : Cn → C be an m-homogeneous polynomial given by

P (x) =
∑

1≤j1≤...≤jm≤n

cj1...jmxj1 . . . xjm .

Defant and Schlüters defined a non-symmetric associated m-form LP : (Cn)
m → C

by

LP

(
x(1), . . . , x(m)

)
=

∑
1≤j1≤...≤jm≤n

cj1...jmx
(1)
j1

. . . x
(m)
jm

.

They estimated the norm of LP on (Cn, ‖ · ‖)m by the norm of P on (Cn, ‖ · ‖)
times a (c log n)m

2

factor for every 1-unconditional norm ‖ · ‖ on C
n. A symmetriza-

tion procedure based on a card-shuffling algorithm which (together with Defant and
Schlüters’ argument) brings the constant term down to (cm log n)m−1 is provided.
Regarding the lower bound, it is shown that the optimal constant is bigger than
(c log n)m/2 when n � m. Finally, the case of �p-norms ‖ · ‖p with 1 ≤ p < 2 is
addressed.

1. Introduction

Let P : Cn → C be an m-homogeneous polynomial. It is well-known that there is a
unique symmetric m-linear form B : (Cn)m → C, such that B(x, . . . , x) = P (x) for all
x ∈ C. Moreover, the polarization formula gives an expression for the m-linear form
B in terms of P (see e.g. [3, Section 1.1]). In fact, for every x(1), . . . , x(m) ∈ C, we
have

B
(
x(1), . . . , x(m)

)
=

1

2mm!

∑
ε∈{−1,1}m

P
(
ε1x

(1) + . . .+ εmx
(m)

)
.

It follows from this identity that

sup
‖x(k)‖≤1

∣∣B (
x(1), . . . , x(m)

)∣∣ ≤ em sup
‖x‖≤1

|P (x)|, (1)

for any norm ‖ · ‖ in C
n.

In [2], Defant and Schlüters defined a non-symmetric m-linear form LP arising from
a given m-homogeneous polynomial P . More precisely, for an m-homogeneous poly-
nomial P : Cn → C defined by

P (x) =
∑

1≤j1≤...≤jm≤n

cj1...jmxj1 . . . xjm ,

its associated m-linear form LP : (Cn)m → C is given by

LP

(
x(1), . . . , x(m)

)
=

∑
1≤j1≤...≤jm≤n

cj1...jmx
(1)
j1

. . . x
(m)
jm

.
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