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We generalise a classical example given by Krein in 1953. We compute the
difference of the resolvents and the difference of the spectral projections explicitly.
We further give a full description of the unitary invariants, i. e., of the spectrum
and the multiplicity. Moreover, we observe a link between the difference of the
spectral projections and Hankel operators.
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1 Introduction and main results

1.1 Introduction

The spectral shift function was introduced at a formal level by Lifshits [16]; Krein presented
in [14] a rigorous definition of the spectral shift function ξ = ξ(•, A1, A0) ∈ L1(R) defined via

tr(χ(A1)− χ(A0)) =
∫
R

χ′(ϑ)ξ(ϑ) dϑ,

whenever χ belongs to a suitable class of functions and A1 − A0 is of trace class. In a naive
definition, one would choose the characteristic function χ = �(−∞,ϑ), as the above formula
then becomes formally

tr
Ä
�(−∞,ϑ)(A1)− �(−∞,ϑ)(A0)

ä
= ξ(ϑ). (1.1)

Unfortunately,1 formula (1.1) is not true: even if A1−A0 is a rank 1 perturbation (and hence
of trace class), the difference of the spectral projections �(−∞,ϑ)(A1) − �(−∞,ϑ)(A0) need not
to be of trace class, i. e., the left hand side of (1.1) is not defined. Krein presented such an
example in his paper [14], where A1 = (H+1)−1 and A0 = (HD+1)−1 are the resolvents at the
spectral point −1 of the Neumann and Dirichlet Laplacian H =

Ä− d2

dt2

äN and HD =
Ä− d2

dt2

äD
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