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periodic solutions also by Poincaré—Birkhoff twist theorem. Lastly, an example with
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1. Introduction

We are concerned in this paper with the existence of periodic solutions for the second order impulsive
differential equation

2" + g(z) = p(t), t# 4
x(tj+) = I(z(t;—),2'(t;—)), (1.1)
a'(tj+) = J(x(t;—),2'(t;—)), JEZ,

where 0 < t; < 27, g(x), p(t) € C(R,R) and p(t) is 2m-periodic, I, J : R x R — R are continuous maps,
and the impulsive time is 27-periodic, that is, t;j11 = t; + 27 for j € Z. We also use z(t;),2'(t;) to denote
@' (tj—), z(t;—) for simplicity.
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This problem comes from Duffing equation

2"+ g(x) = p(t) (1.2)

and there is a wide literature dealing with the existence of periodic solutions for the above Duffing equation,
not only because of its physical significance, but also the application of various mathematical techniques on
it, such as Poincaré-Birkhoff twist theorem in [9], [11], the variational method in [1], [16] and topological
degree or index theories in [3], [4].

Under different assumptions on the function g, for example being superlinear, sublinear, semilinear and
so on, there are many interesting results on the existence and multiplicity of periodic solutions of (1.2), see
[8], [20], [23], [24] and the references therein. Among these, the existence problem of periodic solutions for
semilinear Duffing equations challenges more attentions for its special resonance phenomenon. At resonance,
equation (1.2) may have no bounded solutions, therefore the crucial point of solving this problem is to exclude
the resonance, and there are also many studies on it, see [5], [6] and [14].

Recently, as impulsive equations widely arise in applied mathematics, they attract a lot of attentions and
many authors study the basic theory in [2], [13], along with the existence of periodic solutions of impulsive
differential equations via fixed point theory in [17], topological degree theory in [10], [22], and the variational
method in [18], [25].

As we all know, the existence of impulses, even the simplest impulsive function, may cause complicated
dynamic phenomena and bring great difficulties to study. The changes between the behaviors of solutions
with and without impulsive effects may be great.

Here we take the simplest linear equation as an example and consider

2 +x=0 (1.3)

with the impulsive conditions
/ 1 /!
z(tj+) = 2z(t;—), ' (tj+) = 3% (tj—), (1.4)

where t; = jm for j € Z. It is easy to see that without impulses, all solutions of (1.3) are 27-periodic and
satisfy

22(t) +2'%(t) = C, (1.5)

where C' is a constant related to the initial values. However, under the influence of impulsive functions in
(1.4), all solutions except for the trivial one are unbounded. In fact, with the initial point (2(0),2'(0)) =
(%0,0) (o # 0), the solution at each t;=£ is located on the z-axis and the radius of the trajectory (1.5)
at t;+ becomes two times larger than the previous one at ¢;—, that is, (z(7+),2'(7+)) = (—2x0,0),
(x(2m+4),2'(27+)) = (420,0), - - -, which implies the solution tends to infinity as ¢ — +oo.

From the above example, we find that the existence of periodic solutions for impulsive semilinear Duffing
equations deserves exploring. What impulsive functions do guarantee the existence of periodic solutions is
the key point. Different from the extensive study for second order differential equations without impulsive
terms, there are only a few results on the existence and multiplicity of periodic solutions for impulsive
ones.

In [21], Qian et al. considered the superlinear impulsive differential equation

" + g(x) = p(t,x,a'), t#tj;
Aalis, = L (t;-) 12’ (6)), (16)
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