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1. Introduction

Let X,Y be compact Hausdorff spaces. We denote by C(X),C(Y) the Banach spaces of all complex
continuous functions on X,Y endowed with its usual sup-norm. The following result is well-known as the
Banach—Stone theorem (see [3,27]).

Theorem 1.1. Let T be a surjective linear isometry from the space C(X) onto the space C(Y). Then there
is a homeomorphism 7 : Y — X and a continuous map h € C(Y) with |h(y)| =1 for ally € Y, such that
T can be written as a weighted composition map, that is,

(Tf)(y) = h(y)f(7(y)) (1.1)

forally €Y and all f € C(X).
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This classic theorem has been generalized in several directions (for more details see [4,14]), for instance,
as characterizations of mappings between algebras of continuous functions to be (weighted) composition
operators. Recall that given two algebras of continuous functions, A C C(X) and B € C(Y), and a
continuous map 7 : Y — X, amap T : A — B is said to be: a composition operator on' Y if (T f)(y) =
f(7(y)), a composition operator in modulus on Y if |(Tf)(y)| = |f(7(y))|, and a weighted composition
operator on Y if there exists a non-vanishing function h € C(Y') so that (T'f)(y) = h(y)f(7(y)).

Some results on approximative composition operators have been obtained. The first important result
in this direction was obtained by Amir [1] and Cambern [7,8]. They considered a linear isomorphism T :
Co(X) — Co(Y) for compact Hausdorff X, Y in [1] and locally compact Hausdorff in [7,8] satisfying the
approximate condition |T'||-[|T71|| < 2, instead of being an isometry, and proved that the underlying spaces
are homeomorphic, and furthermore the universal constant 2 is optimal (see [9,11]). Moreover, Cidral, Galego
and Rincén-Villamizar [10] extended the theorem of Amir and Cambern to the vector-valued function spaces.
In 1989, Jarosz [19] obtained a nonlinear version of the theorem of Amir and Cambern (see also [12,15])
which says that any bi-Lipschitz map T from Cy(X) onto Co(Y) with bi-Lipschitz constant less than an
absolute constant € is a perturbation of a composition operator and moreover X and Y are homeomorphic.
In 2005, Dutrieux and Kalton [12] proved that the absolute constant €y of Jarosz’s result may be taken to
be 17/16. In 2011, the constant was improved to 6/5 by Gorak [15]. Recently, Galego and Porto da Silva [13]
gave an optimal estimate of the constant. They showed that a bijective coarse (M, L)-quasi-isometry from
C(X) onto C(Y) with M < /2 can be approximated, in some sense, by a weighted composition operator
onY.

On the other hand, this subject has been studied in the “multiplicative” direction by many mathe-
maticians (see, e.g., [16,21,22,24,25 28]). Most of these results were established in the context of uniform
algebras. A closed subalgebras A of C(X) is called a uniform algebra on X, if A separates points of X (for
any pair of distinct points 21,22 € X there exists f € A such that f(x1) # f(x2)) and contains the constant
functions. In 2005, Rao and Roy [24] showed that a surjective map T : A — A, where A is a uniform
algebra on the maximal ideal space, is a weighted composition operator if it is spectrally-multiplicative, that
is c((Tf)(Tg)) = o(fg) for all f,g € A, which extended a result of Molnar [22] where A = C(X). After
that, Lambert, Luttman and Tonev [20] proved the following theorem. Before stating the theorem, we need
to introduce a few notions. For f € C(X), we define M(f) ={z € X :|f(2)] = ||f||}- A function f € C(X)
is a peaking function, if f(x) =1 for all z € M(f). Let A be a subset of C(X) and F(A) denotes the set of
all peaking functions in A.

Theorem 1.2. Let A and B be uniform algebras. If a map T : A — B preserves the peaking functions (i.e.,
T(F(A)) = F(B)) and satisfies

ITf-Tyll = /9l (1.2)

for all f,g € A, then there exists a homeomorphism T : 6B — JA between the Choquet boundaries (= the
strong boundaries) of A and B such that

(THWI =1 () (1.3)

forally € 0B and all f € A.

A subset @ C X is said to be a boundary for A if for every f € A there exists x € 2 such that
|f(x)| = ||f||. If there exists a unique minimal closed boundary for A, it is called the Silov boundary for A
which is denoted by 0A. A point zg € X is called weak boundary point of A if for each neighborhood U of
xg, there exists f € A such that M(f) C U. We denote by cA the set of all weak boundary points of A.
A point ¢ € X is called strong boundary point of A if for each neighborhood U of xg, there exists f € A
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