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ASYMPTOTIC MEAN VALUE PROPERTIES

FOR FRACTIONAL ANISOTROPIC OPERATORS

CLAUDIA BUCUR AND MARCO SQUASSINA

Abstract. We obtain an asymptotic representation formula for harmonic functions with respect
to a linear anisotropic nonlocal operator. Furthermore we get a Bourgain-Brezis-Mironescu type
limit formula for a related class of anisotropic nonlocal norms.
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1. Introduction

This paper presents an asymptotic mean value property for harmonic functions for a class
of anisotropic nonlocal operators. To introduce the argument, we notice that as known from
elementary PDEs facts, a C2 function u : Ω ⊂ R

n → R is harmonic in Ω (i.e. it holds that
Δu = 0 in Ω) if and only if it satisfies the mean value property, that is

u(x) = −
∫
Br(x)

u(y)dy, whenever Br(x) ⊂ Ω.

As a matter of fact, this condition can be relaxed to a pointwise formulation by saying that
u ∈ C2(Ω) satisfies Δu(x) = 0 at a point x ∈ Ω if and only if

(1.1) u(x) = −
∫
Br(x)

u(y)dy + o(r2), as r → 0.

This asymptotic formula holds true also in the viscosity sense for any continuous function. A
similar property can be proved for quasi-linear elliptic operators such as the p-Laplace operator
−Δpu in the asymptotic form, as the radius r of the ball vanishes. More precisely, Manfredi,
Parviainen and Rossi proved in [20] that, if p ∈ (1,∞], a continuous function u : Ω ⊂ R

n → R is
p-harmonic in Ω in viscosity sense if and only if

(1.2) ϕ(x) ≥ (≤)
p− 2

2p+ 2n

(
max
Br(x)

ϕ+ min
Br(x)

ϕ
)
+

2 + n

p+ n
−
∫
Br(x)

ϕ(y)dy + o(r2),

for any ϕ ∈ C2 such that u−ϕ has a strict minimum (strict maximum for ≤) at x ∈ Ω at the zero
level. Notice that formula (1.2) reduces to (1.1) for p = 2. Formula (1.2) holds in the classical
sense for smooth functions, at those points x ∈ Ω such that ∇u(x) 
= 0. On the other hand, the
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