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INTERPOLATION BETWEEN HÖLDER AND LEBESGUE SPACES
WITH APPLICATIONS

ANASTASIA MOLCHANOVA, TOMÁŠ ROSKOVEC, AND FILIP SOUDSKÝ

In memory of Václav Nýdl.

Abstract. Classical interpolation inequality of the type ‖u‖X ≤ C‖u‖θY ‖u‖1−θ
Z is well

known in the case when X, Y , Z are Lebesgue spaces. In this paper we show that this
result may be extended by replacing norms ‖ · ‖Y or ‖ · ‖X by suitable Hölder semi-norm.
We shall even prove sharper version involving weak Lorentz norm. We apply this result
to prove the Gagliardo–Nirenberg inequality for a wider scale of parameters.

1. Introduction and main result

The classical Sobolev embedding theorem claims that if 1 ≤ p < n then for any weakly
differentiable function u ∈ WLp one has

‖u‖p∗ ≤ C‖∇u‖p,
where p∗ = np

n−p
and C > 0 is independent of u. If p > n then by the Morrey lemma, for

the continuous representative the following holds
‖u‖C0,1−n

p
≤ C‖∇u‖p.

These are classical results which can be found, for instance, in classical books [2] or [9].
Following the notation of L. Nirenberg [20, Lecture II], consider the extended norm for
−∞ < 1

p
< ∞.

Definition 1.1. For p ∈ (0,∞] define

‖u‖p =
(ˆ

Rn

|u|pdx
) 1

p

;

and
‖u‖∞ = esssupx∈Rn |u(x)|.

For p < 0 set numbers s and p̃ by s = [−n/p] (where [α] stands for the integer part of α),
n/p̃ = s+ n/p, and define

(1)
‖u‖p = ‖∇su‖p̃, if −∞ < p̃ < −n,

‖u‖p = ‖∇su‖∞, if s = −n/p,
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