J. Math. Anal. Appl. ••• (••••) •••--••

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Boundedness of projected composition operators over the unit disc

Chong Zhao ¹

School of Mathematics, Shandong University, Jinan, Shandong 250100, People's Republic of China

ARTICLE INFO

Article history: Received 14 April 2018 Available online xxxx Submitted by J.A. Ball

Keywords: Composition operator Bounded operator Hardy space Bergman space

ABSTRACT

In the present paper, we carry forward R. Rochberg's work [4] on the boundedness of composition operators associated to continuous symbols of norm greater than 1. More general sufficient conditions and necessary conditions are given for the boundedness of $K_{\varphi} := P_{H^2}D_{\varphi}$ where $D_{\varphi} : \mathbb{C}[z] \to L^2(\mathbb{T})$ is the composition operator of the symbol φ .

© 2018 Published by Elsevier Inc.

1. Introduction

Let $\Omega \subset \mathbb{C}$ be a bounded domain, and μ be a measure supported on Ω that $\partial \Omega \subset \text{supp } \mu$. Define on $\mathbb{C}[z]$ the inner product

$$\langle f, g \rangle_{\mu} = \int_{\Omega} f(z) \overline{g(z)} d\mu(z),$$

and denote by H_{μ} the completion of $\mathbb{C}[z]$ with respect to $\langle \cdot, \cdot \rangle_{\mu}$. It is well-known that H_{μ} can be seen as a subspace of $L^{2}(\mu)$. Suppose φ is a continuous function on supp μ , then $f \circ \varphi \in L^{2}(\mu)$ for each $f \in \mathbb{C}[z]$. Let $P_{H_{\mu}}$ denote the orthogonal projection from $L^{2}(\mu)$ onto H_{μ} . If there is a constant C making $||P_{H_{\mu}}(f \circ \varphi)||_{\mu} \leq C||f||_{\mu}, \forall f \in \mathbb{C}[z]$, then the mapping $f \to P_{H_{\mu}}(f \circ \varphi)$ extends to a bounded operator $K_{\varphi,\mu}: H_{\mu} \to H_{\mu}$. We call φ the symbol of K_{φ} .

In the case H_{μ} be the Hardy space $H^2(\mathbb{D})$ and $\varphi: \mathbb{D} \to \mathbb{D}$ be analytic, the boundedness of the composition operator $C_{\varphi}: H^2(\mathbb{D}) \to H^2(\mathbb{D}), f \mapsto f \circ \varphi$ was extensive studied in [2]. In the literature [3], investigation was made into the case where $\varphi \in C(\mathbb{T})$ is not assumed analytic. They proved the compactness of

https://doi.org/10.1016/j.jmaa.2018.07.021 0022-247X/© 2018 Published by Elsevier Inc.

E-mail address: chong.zhao@sdu.edu.cn.

 $^{^1}$ Partially supported by NSFC (No. 11501329) and Shandong Province Natural Science Foundation ZR2014AQ009.

2

C. Zhao / J. Math. Anal. Appl. ••• (••••) •••--

$$K_{\varphi}: H^2(\mathbb{D}) \to H^2(\mathbb{D}), f \mapsto P_{H^2}(f \circ \varphi)$$

when $(1-|\varphi|^2)^{-1}$ is integrable, and carefully studied the boundedness of K_{φ} for the symbols $\varphi(z)=az+b\bar{z}, |a|+|b|\leq 1$. In Rochberg's work [4], the symbols φ with supremum norm greater than 1 were considered. When $||\varphi||_{\infty}>1$, $f\circ\varphi$ can not be defined in the obvious manner on $H^2(\mathbb{D})$, and usually K_{φ} is not expected to be bounded. Therefore it is interesting to find out which φ make K_{φ} bounded. Introducing the d-bar methods and Large Deviations, Rochberg proved some general sufficient conditions for the boundedness of K_{φ} , and gave some examples in which K_{φ} is not bounded. In general, K_{φ} is bounded provided the analytic part of φ is small in some sense.

In the present paper we reinterpret Rochberg's observations, and obtain some further results. To illustrate our results, take the $H^2(\mathbb{D})$ case as an example. Denote by dm the normalized Haar measure on $\mathbb{T} = \partial \mathbb{D}$. Let $\varphi(e^{i\theta}) = \sum_{n=-\infty}^{\infty} c_n e^{in\theta}$ be a continuous function on \mathbb{T} . For $n \in \mathbb{Z}_+$ and $z \in \mathbb{C}$ denote by $s_n(z) = \sum_{k=-n}^n c_k z^k$ the partial sums and $\sigma_n(z) = \frac{1}{2n+1} \sum_{k=0}^n s_k(z)$ the Cesàro means of the Fourier series of φ . It is well known that $\{\sigma_n \mid_{\mathbb{T}}\}$ converges to φ uniformly. Suppose the sequence $\{\sigma_n(z)\}$ of functions converges uniformly to a function φ^* on some ring

$$R_{\omega} := \{ z \in \mathbb{C} : |z| \in [1, \rho_1) \}, 1 < \rho_1 \le \infty,$$

then φ^* is analytic on $R_{\varphi} - \mathbb{T}$. Analytically continue φ^* from $R_{\varphi} - \mathbb{T}$ to a maximal domain $\Omega'_{\varphi^*} \subset \mathbb{C} \setminus \overline{\mathbb{D}}$, then φ^* is defined and continuous on $\Omega_{\varphi^*} := \Omega'_{\varphi^*} \cup \mathbb{T}$. By the terminology simple closed curve we mean a continuous injective function on \mathbb{T} . If a curve γ has nonzero first derivative and k-th continuous derivative, we say it is a regular C^k -curve. Denote by \mathfrak{P}_{φ} the set of all the rectifiable simple closed curves that is homotopic to $\mathrm{Id}_{\mathbb{T}}$ within Ω_{φ^*} , and \mathfrak{P}^k_{φ} the subset of regular C^k -curves from \mathfrak{P}_{φ} .

We prove the following sufficient condition for the boundedness of K_{φ} .

Theorem 1.1. Suppose there is a $\gamma \in \mathfrak{P}_{\varphi}$ such that $||\varphi^* \circ \gamma||_{\infty} < 1$, then K_{φ} extends to a Hilbert–Schmidt operator on $H^2(\mathbb{D})$.

Then in Section 3 we give two general conditions under which K_{φ} cannot be extended to a bounded operator, which are almost converses to Theorem 1.1. Applying our results, we show in Examples 2.3 and 3.7 that for the symbol $\varphi(e^{i\theta}) = \frac{c}{(e^{i\theta}-2/3)(e^{i\theta}+3)}, \theta \in [0,2\pi), K_{\varphi}$ is bounded if and only if $|c| < \frac{121}{36}$, which cannot be obtained from previous work.

The present paper is organized as follows. In Section 2 we focus on $H^2(\mathbb{D})$, and obtain sufficient conditions for the boundedness of K_{φ} . In Section 3, we give some general necessary conditions. Then we generalize our approach to other function spaces. In Section 4 we look at the Bergman space $L^2(\mathbb{D})$.

2. Sufficient conditions for boundedness of K_{φ} on $H^{2}(\mathbb{D})$

Let φ be a continuous function on \mathbb{T} . As in the introduction we suppose there is a maximal domain $\Omega'_{\varphi^*} \subset \mathbb{C}\backslash \overline{\mathbb{D}}$ with $\mathbb{T} \subset \partial \Omega'_{\varphi^*}$ and a continuous function φ^* defined on $\Omega_{\varphi^*} = \Omega'_{\varphi^*} \cup \mathbb{T}$, such that φ^* is analytic on Ω'_{φ^*} and coincides with φ on \mathbb{T} .

For integers $m, n \geq 0$, we have

$$\langle \varphi^m, z^n \rangle_{\mathbb{T}} = \frac{1}{2\pi} \int_{0}^{2\pi} \varphi^m(e^{i\theta}) e^{-in\theta} d\theta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\varphi^{*m}(e^{i\theta})}{e^{in\theta}} \frac{de^{i\theta}}{ie^{i\theta}}$$

Please cite this article in press as: C. Zhao, Boundedness of projected composition operators over the unit disc, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2018.07.021

Download English Version:

https://daneshyari.com/en/article/8899302

Download Persian Version:

https://daneshyari.com/article/8899302

<u>Daneshyari.com</u>