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where 2 is a smooth bounded domain in R", n > 2s, s € (0,1), (—A)® is the well
2n —

known fractional Laplacian, u € (0,n), 2;, = 2# is the upper critical exponent

n—2s

in the Hardy-Littlewood—Sobolev inequality, 1 < ¢ < 2 and \,§ > 0 are real
parameters. We study the fibering maps corresponding to the functional associated
with (Py ) and show that minimization over suitable subsets of Nehari manifold
renders the existence of at least two non trivial solutions of (Py ) for suitable range
of A and 4.
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1. Introduction

Let Q C R™ be a bounded domain with smooth boundary 99 (at least C?), n > 2s and s € (0,1). We
consider the following nonlinear doubly nonlocal system with critical nonlinearity:
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where Q is a smooth bounded domain in R", n > 2s, s € (0,1), u € (0,n), 2, = n
n—

exponent in the Hardy—Littlewood—Sobolev inequality, 1 < ¢ < 2, A\;§ > 0 are real parameters and (—A)®

H# is the upper critical
S

is the fractional Laplace operator defined as

“Aulzr) = n u(x) — u(y)
<A><>2@Rvggfaagd

n+2s
Srr((lis)), I" being the Gamma function.

The fractional Laplacian is the infinitesimal generator of Lévy stable diffusion process and arise in anomalous

where P.V. denotes the Cauchy principal value and C? = 7~ 222571

diffusion in plasma, population dynamics, geophysical fluid dynamics, flames propagation, chemical reactions
in liquids and American options in finance, see [3] for instance.
In the local case, authors in [5] studied the existence of ground states for the nonlinear Choquard equation

P
—Au+V(z)u = % dy | |u/P~%u in R", (1.1)
Q
where p > 1 and n > 3. Recently, Ghimenti, Moroz and Schaftingen [16] proved the existence of least action

nodal solution for the problem
—Au+u = (I, * [u|*)u in R™,

where * denotes the convolution and I, denotes the Riesz potential. Further results related to Choquard
equations can be found in the survey paper [24] and the references therein. Alves, Figueiredo and Yang [1]
proved existence of a nontrivial solution via penalization method for the following Choquard equation

—Au+V(z)u= (|z|™ * F(u))f(u) in R",

where 0 < p < N, N =3, V is a continuous real valued function and F' is the primitive of function f. In
the nonlocal case, Choquard equations involving fractional Laplacian is a recent topic of research. Authors
in [9] obtained regularity, existence, nonexistence, symmetry as well as decays properties for the problem

(=AY’ u+wu = (|J2|*™ * [ul?) |u[P~?u in R,

where w > 0, p > 1 and s € (0,1). Fractional Choquard equations also known as nonlinear fractional
Schrodinger equations with Hartree-type nonlinearity arise in the study of mean field limit of weakly in-
teracting molecules, physics of multi particle systems and the quantum mechanical theory, etc. These are
recently studied by some authors in [6,10,22]. We also refer [2] and [4] for the qualitative behaviour of
Choquard type problems in the semiclassical limit.

Concerning the boundary value problems involving the Choquard nonlinearity, the Brezis—Nirenberg type
problem that is
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